Skip to main content
Log in

Distribution and Differential Expression of (E)-4,8-Dimethyl-1,3,7-Nonatriene in Leaf and Floral Volatiles of Magnolia and Liriodendron Taxa

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Analyses of volatiles emitted from artificially damaged leaves attached to branches of seven Magnolia taxa revealed the presence of (Z)-3-hexenyl acetate, (Z)-3-hexenol (the green odor compounds), and several mono- and sesquiterpenes, e.g., (Z)- and (E)-β-ocimene and caryophyllene. An herbivore-induced leaf volatile, (E)-4,8-dimethyl-1,3,7-nonatriene, known as a predator attractant in agricultural plants, was emitted 4–6 hr after leaves were damaged in M. hypoleuca. The damaged leaves of M. grandiflora, however, immediately released (E)-4,8-dimethyl-1,3,7-nonatriene. Undamaged leaves of Magnolia species examined did not emit volatile compounds. In addition, detached flowers of six Magnolia taxa and Liriodendron tulipifera also emit (E)-4,8-dimemyl-1,3,7-nonatriene as a floral volatile (up to 30% in some species); the chemical was also emitted from the intact flowers of M. heptapeta and M. salicifolia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • ANDERSEN, R. A., HAMILTON-KEMP, T. R., LOUGHRIN, J. H., HUGHES, C. G., HILDEBRAND, D. F., and SUTTON, T. G. 1988. Green leaf headspace volatiles from Nicotiana tabacum lines of different trichome morphology. J. Agric. Food Chem. 36:295–299.

    Google Scholar 

  • BOLAND, W., FENG, Z., DONATH, J., and GÄBLER, A. 1992. Are acyclic C11 and Cl6 homoterpenes plant volatiles indicating herbivory? Naturwissenschaften 79:368–371.

    Google Scholar 

  • BOLAND, W., HOPKE, J., DONATH, J., NÜSKE, J., and BUBLITZ, F. 1995. Jasmonic acid and coronatin induce odor production in plants. Angew. Chem. Int. Ed. Engl. 34:1600–1602.

    Google Scholar 

  • CHEW, F. S. 1988. Searching for defensive chemistry in the Cruciferae, or, do glucosinolates always control interactions of Cruciferae with their potential herbivores and symbionts? No!, pp. 81–112, in K. C. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, San Diego.

    Google Scholar 

  • DICKR, M., and SABELIS, M. W. 1992. Costs and benefits of chemical information conveyance: Proximate and ultimate factors, pp. 122–155, in B. D. Roitberg and M. B. Isman (eds.). Insect Chemical Ecology; An Evolutionary Approach. Chapman and Hall, New York.

    Google Scholar 

  • EHRLICH, P. R., and RAVEN, P.H. 1964. Butterflies and plants: A study in coevolution. Evolution 18:586–608.

    Google Scholar 

  • FARMER, E. E., and RYAN, C. A. 1990. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. U.S.A. 87:7713–7716.

    Google Scholar 

  • GREENWALD, R., CHAYKOVSKY, M., and COREY, E. J. 1963. The Wittig reaction using methylsulfinyl carbanion-dimethyl sulfoxide. J. Org. Chem. 28:1128–1129.

    Google Scholar 

  • HARBORNE, J. B. 1993. Introduction to Ecological Biochemistry, 4th ed. Academic Press, London.

    Google Scholar 

  • HATANAKA, A. 1993. The biogeneration of green odour by green leaves. Phytochemistry 34:1201–1218.

    Google Scholar 

  • JAKOBSEN, H. B., FRIJS, P., NIELSEN, J. K., and OLSEN, C. E. 1994. Emission of volatiles from flowers and leaves of Brassica napus in situ. Phytochemistry 37:695–699.

    Google Scholar 

  • KAISER, R. 1991. Trapping, investigation, and reconstitution of flower scents, pp. 213–253, in P. M. Muller and D. Lamparsky (eds.). Perfumes: Art, Science, and Technology. Elsevier Applied Science, New York.

    Google Scholar 

  • KNUDSEN, J. T., and MORI, S. A. 1996. Floral scents and pollination in neotropical Lecythidaceae. Biotropica 28:42–60.

    Google Scholar 

  • KNUDSEN, J. T., TOLLSTEN, L., and BERGSTRÖM, L. G. 1993. Floral scents—a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280.

    Google Scholar 

  • LI, Y., DICKENS, J. C., and STEINER, W. W. M. 1992. Antennal olfactory responsiveness of Microplitis croceipes (Hymenoptera: Braconidae) to cotton plant volatiles. J. Chem. Ecol. 18:1761–1773.

    Google Scholar 

  • LOUGHRIN, J. H., MANUKIAN, A., HEATH, R. R., TURLINGS, T. C. J., and TUMLINSON, J. H. 1994. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc. Natl. Acad. Sci. U.S.A. 91:11836–11840.

    Google Scholar 

  • LOUGHRIN, J. H., MANUKIAN, A., HEATH, R. R., and TUMLINSON, J. H. 1995. Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. J. Chem. Ecol. 21:1217–1227.

    Google Scholar 

  • MATTIACCI, L., DICKE, M., and POSTHUMUS, M. A. 1994. Induction of parasitoid attracting synomone in Brussels sprouts plants by feeding of Pieris brassicae larvae: Role of mechanical damage and herbivore elicitor. J. Chem. Ecol. 20:2229–2247.

    Google Scholar 

  • MATTIACCI, L., DICKE, M., and POSTHUMUS, M. A. 1995. β-Glucosidase: An elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc. Natl. Acad. Sci. U.S.A. 92:2036–2040.

    Google Scholar 

  • PELLMYR, O., and THIEN, L. B. 1986. Insect reproduction and floral fragrances: Keys to the evolution of the angiosperms? Taxon 35:76–85.

    Google Scholar 

  • PELLMYR, O., TANG, W., GROTH, I., BERGSTROM, G., and THIEN, L. B. 1991. Cycad cone and angiosperm floral volatiles: Inferences for the evolution of insect pollination. Biochem. Syst. Ecol. 19:623–627.

    Google Scholar 

  • PRICE, P. W., BOUTON, C. E., GROSS, P., MC PHERON, B. A., THOMPSON, J. N., and WEIS, A. E. 1980. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11:41–65.

    Google Scholar 

  • RHOADES, D. F. 1979. Evolution of plant chemical defenses against herbivores, pp. 3–48, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores—Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • ROSE, U. S. R., MANUKIAN, A., HEATH, R. R., and TUMLINSON, J. H. 1996. Volatile semiochemicals released from undamaged cotton leaves: A systemic response of living plants to caterpillar damage. Plant Physiol. 111:487–495.

    Google Scholar 

  • SCRIBER, J. M. 1988. Tale of the tiger: Beringial biogeography, binomial classification, and breakfast choices in the Papilio glaucus complex of butterflies, pp. 241–301, in K. C. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, San Diego.

    Google Scholar 

  • SHULAEV, V., SILVERMAN, P., and RASKIN, I. 1997. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721.

    Google Scholar 

  • SPENCER, K. C. 1988. Chemical mediation of coevolution in the Passiflora-Heliconius interaction, pp. 167–240, in K. C. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, San Diego.

    Google Scholar 

  • TAKABAYASHI, J., DICKE, M., and POSTHUMUS, M. A. 1994a. Volatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors. J. Chem. Ecol. 20:1329–1354.

    Google Scholar 

  • TAKABAYASHI, J., DICKE, M., TAKAHASHI, S., POSTHUMUS, M. A., and VAN BEEK, T. A. 1994b. Leaf age affects composition of herbivore-induced synomones and attraction of predatory mites. J. Chem. Ecol. 20:373–386.

    Google Scholar 

  • THIEN, L. B. 1974. Floral biology of Magnolia. Am. J. Bot. 61:1037–1045.

    Google Scholar 

  • THIEN, L. B., HEIMERMANN, W. H., and HOLMAN, R. T. 1975. Floral odors and quantitative taxonomy of Magnolia and Liriodendron. Taxon 24:557–568.

    Google Scholar 

  • THORNE, R. F. 1996. The least specialized angiosperms, pp. 286–313, in D. W. Taylor and L. J. Hickey (eds.). Flowering Plant Origin, Evolution and Phytogeny. Chapman and Hall, New York.

    Google Scholar 

  • TRESEDER, N. G. 1978. Magnolias. Faber and Faber, London.

    Google Scholar 

  • TURLINGS, T. C. J., and TUMLINSON, J. H. 1992. Systemic release of chemical signals by herbivore-injured corn. Proc. Natl. Acad. Sci. U.S.A. 89:8399–8402.

    Google Scholar 

  • TURLINGS, T. C. J., TUMLINSON, J. H., and LEWIS, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253.

    Google Scholar 

  • TURLINGS, T. C. J., LOUGHRIN, J. H., MC CALL, P. J., ROSE, U. S. R., LEWIS, W. J. and TUMLINSON, J. H. 1995. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc. Natl. Acad. Sci. U.S.A. 92:4169–4174.

    Google Scholar 

  • UEDA, K. 1980. Taxonomic study of Magnolia sieboldii C. Koch. Acta Phylotax. Geobot. 31:117–125.

    Google Scholar 

  • UEDA, K. 1985. A nomenclaturel revision of the Japanese Magnolia species (Magnoliac.), together with two long-cultivated Chinese species. III. M. heptapeta and M. quinquepeta. Acta Phytotax. Geobot. 36:149–161.

    Google Scholar 

  • UEDA, K. 1986a. A nomenclatural revision of the Japanese Magnolia species (Magnoliaceae) together with two long-cultivated Chinese species. I. M. hypoleuca. Taxon 35:340–344.

    Google Scholar 

  • UEDA, K. 1986b. A nomenclatural revision of the Japanese Magnolia species (Magnoliaceae) together with two long-cultivated Chinese species. II. M. tomentosa and M. praecocissima. Taxon 35:344–347.

    Google Scholar 

  • WILLIAMS, N. H., and WHITTEN, W. M. 1983. Orchid floral fragrances and male euglossine bees: Methods and advances in the last sesquidecade. Biol. Bull. 164:355–395.

    Google Scholar 

  • WOOD, D. L. 1982. The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark bettles. Annu. Rev. Entomal. 27:411–446.

    Google Scholar 

  • YASUKAWA, S., KATO, H., YAMAOKA, R., TANAKA, H., ARAI, H., and KAWANO, S. 1992. Reproductive and pollination biology of Magnolia and its allied genera (Magnoliaceae) I. Floral volatiles of several Magnolia and Michelia species and their roles in attracting insects. Plant Species Biol. 7:121–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azuma, H., Thien, L.B., Toyota, M. et al. Distribution and Differential Expression of (E)-4,8-Dimethyl-1,3,7-Nonatriene in Leaf and Floral Volatiles of Magnolia and Liriodendron Taxa. J Chem Ecol 23, 2467–2478 (1997). https://doi.org/10.1023/B:JOEC.0000006660.84363.1b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEC.0000006660.84363.1b

Navigation