Journal of Atmospheric Chemistry

, Volume 47, Issue 3, pp 209–222 | Cite as

Effects of Rainwater Iron and Hydrogen Peroxide on Iron Speciation and Phytoplankton Growth in Seawater near Bermuda

  • Joan D. Willey
  • Robert J. Kieber
  • G. Brooks AveryJr.


Rainwater is a major source of dissolved iron to much of the world's oceans, including regions where iron may be a limiting nutrient for marine phytoplankton primary production. Rainwater iron is therefore potentially important in regulating global photosynthetic uptake of CO2, and hence climate. Two rainwater addition bioassay experiments (2% rain) conducted at the Bermuda Atlantic Time-series Station (BATS) during March 2000 using 50 or 100 nM FeCl2 or FeCl3 in synthetic rain (pH 4.5 H2SO4) showed an increase in chlorophyll a 50% greater than controls after three days. Addition of 20 μM hydrogen peroxide, a typical rainwater concentration at BATS, completely removed the chlorophyll a increase with both forms of iron additions, suggesting stimulation of phytoplankton growth by rainwater iron can be limited by rainwater H2O2. In laboratory experiments using Gulf Stream seawater, iron-enriched (100 nM Fe(III)) synthetic rain was mixed with seawater in a 5% rain 95% seawater ratio. Dissolved iron concentrations increased two times above concentrations predicted based on dilution alone. The increase in soluble iron probably resulted from release from seawater particles and was maintained for more than 24 hours. No increase was observed in controls that did not have iron added to the synthetic rain, or with synthetic rainwater containing both added iron and H2O2. The increase in iron concentration above that predicted by dilution indicates rain may have a larger effect on seawater iron concentrations than that calculated for rainwater iron addition alone.

rain iron hydrogen peroxide seawater chlorophyll a 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boyd, P. W., Watson, A. J., Law, C. S., Abraham, E. R., Trull, T., Murdoch, R., Bakker, C. E., Bowie, A. R., Buesseler, K. O., Chang, H., Charette, M., Croot, P., Downing, K., Frew, R., Gall, M., Hadfield, M. J. H., Harvey, M., Jameson, G., LaRoche, J., Liddicoat, M. I., Ling, R., Maldonado, T., McKay, R. M. L., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi, K., Sutton, P., Strzepek, R., Tanneberger, K., Turner, S., Waite, A., and Zeldis, J., 2000: A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization, Nature 407, 695–702.CrossRefGoogle Scholar
  2. Boye, M., Aldrich, A. P., van den Berg, C. M. G., de Jong, J. T. M., Veldhuis, M., and de Baar, H. J. W., 2003: Horizontal gradient of the chemical speciation of iron in surface waters of the northeast Atlantic Ocean, Mar. Chem. 80, 129–143.CrossRefGoogle Scholar
  3. Bruland, K. W., 1980: Oceanographic distributions of cadmium, zinc, nickel and copper in the North Pacific, Earth Planet. Sci. Lett. 47, 176–198.CrossRefGoogle Scholar
  4. Bruland, K. W., Franks, R. P., Knauer, G. A., and Martin, J. H., 1979: Sampling and analytical methods for the determination of copper, cadmium, zinc, and nickel at the nanogram per liter level in seawater, Anal. Chim. Acta 105, 223–245.CrossRefGoogle Scholar
  5. Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon, R. M., Tanner, S., Chavez, F. P., Ferioli, L., Sakamoto, C., Rogers, P., Millero, F., Steinberg, P., Nightingale, P., Cooper, D., Cochlan, W. P., Landry, M. R., Constantinou, J., Rollwagen, G., Trasvina, A., and Kudela, R., 1996: A massive phytoplankton bloom induced by an ecosystem scale iron fertilization experiment in the equatorial Pacific Ocean, Nature 383, 495–501.CrossRefGoogle Scholar
  6. Cooper, W. J., Saltzman, E. S., and Zika, R. G., 1987: The contribution of rainwater to variability in surface ocean hydrogen peroxide, J. Geophys. Res. 92, 2970–2980.Google Scholar
  7. Croot, P., Bowie, A. R., Frew, R., Maldonado, T., Hall, J. A., Safi, K., LaRoche, J., Boyd, P. W., and Law, C. S., 2001: Retention of dissolved iron and Fe(II) in an iron induced Southern Ocean phytoplankton bloom, Geophys. Res. Lett. 28, 3425–3428.CrossRefGoogle Scholar
  8. De Laat, J. and Gallard, H., 1999: Catalytic decomposition of hydrogen peroxide by Fe(II) in homogeneous aqueous solution: Mechanism and kinetic modeling, Environ. Technol. Lett. 33, 2726–2732.Google Scholar
  9. Duce, R. A. and Tindale, N. W., 1991: Atmospheric transport of iron and its deposition in the ocean, Limnol. Oceanogr. 36, 1715–1726.Google Scholar
  10. Fitzwater, S. E., Coale, K. H., Gordon, R. M., Johnson, K. S., and Ondrusek, M. E., 1996: Iron deficiency and phytoplankton growth in the equatorial Pacific, Deep Sea Res. 43, 995–1015.Google Scholar
  11. Gao, Y., Kaufman, Y. J., Tanre, D., Kolber, D., and Falkowski, P. G., 2001: Seasonal distributions of Aeolian iron fluxes to the global ocean, Geophys. Res. Lett. 28, 29–32.Google Scholar
  12. Graedel, T. E., Mandich, M. L., and Weschler, C. J., 1986: Kinetic model studies of atmospheric droplet chemistry 2. Homogeneous transition metal chemistry in raindrops, J. Geophys. Res. 91, 5205–5221.Google Scholar
  13. Hanson, A. K., Tindale, N. W., and Abel-Moati, M. A., 2001: An equatorial Pacific rain event: influence on the distribution of iron and hydrogen peroxide in surface waters, Mar. Chem. 75, 69–88.CrossRefGoogle Scholar
  14. Hoffmann, H., Hoffmann, P., and Lieser, K. H., 1991: Transition metals in atmospheric aqueous samples, analytical determination and speciation, Fresenius J. Anal. Chem. 340, 591–597.CrossRefGoogle Scholar
  15. Jickells, T. D., 1999: The inputs of dust derived elements to the Sargasso Sea; a synthesis, Mar. Chem. 68, 5–14.CrossRefGoogle Scholar
  16. Johnson, K. S., Coale, K. H., Elrod, V. A., and Tindale, N. W., 1994: Iron photochemistry in seawater from the equatorial Pacific, Mar. Chem. 46, 319–334.CrossRefGoogle Scholar
  17. Johnson, K. S., Gordon, R. M., and Coale, K. H., 1997: What controls dissolved iron concentrations in the world ocean?, Mar. Chem. 57, 137–161.Google Scholar
  18. Kieber, R. J., Cooper, W. J., Willey, J. D., and Avery, G. B., 2001c: Hydrogen peroxide at the Bermuda Atlantic Time Series Station. Part 1: Temporal variability of atmospheric hydrogen peroxide and its influence on seawater concentrations, J. Atmos. Chem. 39, 1–13.CrossRefGoogle Scholar
  19. Kieber, R. J. and Helz, R. G., 1986: Two method verification of hydrogen peroxide determinations in natural waters, Anal. Chem. 58, 2312–2315.CrossRefGoogle Scholar
  20. Kieber, R. J., Peake, B., Willey, J. D., and Jacobs, B., 2001b: Iron speciation and hydrogen peroxide concentrations in New Zealand rainwater, Atmos. Environ. 35, 6041–6048.CrossRefGoogle Scholar
  21. Kieber, R. J., Willey, J. D., and Avery, G. B., 2003: Temporal variability of rainwater iron speciation at the Bermuda Atlantic Time Series Station, J. Geophys. Res. 108, 1–7.CrossRefGoogle Scholar
  22. Kieber, R. J., Williams, K. H., Willey, J. D., Skrabal, S. A., and Avery, G. B., 2001a: Iron speciation in coastal rainwater: Concentration and deposition to seawater, Mar. Chem. 73, 83–95.CrossRefGoogle Scholar
  23. Kuma, K., Nishioka, J., and Matsunaga, K., 1996: Controls on iron (III) hydroxide solubility in seawater: The influence of pH and natural organic chelators, Limnol. Oceanogr. 41, 396–407.Google Scholar
  24. Martin, J. H. and Fitzwater, S. E., 1988: Iron deficiency limits phytoplankton growth in the northeast Pacific subartic, Nature 331, 341–343.Google Scholar
  25. Martin, J. H., Fitzwater, S. E., Gordon, R. M., Hunter, C. N., and Tanner, S., 1993: Iron, primary production and carbon-nitrogen flux studies during the JGOFS North Atlantic bloom experiment, Deep Sea Res. 40, 115–134.Google Scholar
  26. Martin, J. H. and Gordon, R. M., 1988: Northeast Pacific iron distributions in relation to phytoplankton productivity, Deep Sea Res. 35, 177–196.Google Scholar
  27. Miller, W. L. and Kester, D. R., 1994: Peroxide variations in the Sargasso Sea, Mar. Chem. 48, 17–29.CrossRefGoogle Scholar
  28. Millero, F., 1998: Solubility of Fe(III) in seawater, Earth Planet. Sci. Lett. 154, 323–329.CrossRefGoogle Scholar
  29. Millero, F. and Sotolongo, S., 1989: The oxidation of Fe(II) with H2O2 in seawater, Geochim. Cosmochim. Acta 53, 1867–1873.CrossRefGoogle Scholar
  30. Millero, F., Sotolongo, S., and Izaguirre, M., 1987: The oxidation of Fe(II) in seawater, Geochim. Cosmochim. Acta 51, 793–801.Google Scholar
  31. Moffett, J. W. and Zika, R. G., 1987: Reaction kinetics of hydrogen peroxide with copper and iron in seawater, Environ. Sci. Technol. 21, 804–810.CrossRefGoogle Scholar
  32. NASA SeaWiFS satellite imagery, 2003: Scholar
  33. Parsons, T., Maita, Y., and Lalli, C., 1989: A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon Press, Oxford.Google Scholar
  34. Prospero, J. M., 1996: Saharan Dust Transport over the North Atlantic Ocean and Mediterranean: An Overview, Kluwer.Google Scholar
  35. Spokes, L. J. and Jickells, T. D., 1996: Factors controlling the solubility of aerosol trace metals in the atmosphere and on mixing into seawater, Aquat. Geochem. 1, 355–374.CrossRefGoogle Scholar
  36. Stookey, L. C., 1970: Ferrozine-a new spectrophotometric reagent for iron, Anal. Chem. 42, 779–781.CrossRefGoogle Scholar
  37. Stumm, W. and Morgan, J. J., 1996: Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Wiley, New York.Google Scholar
  38. Timmermans, K. R., Gledhill, M., Nolting, R. F., Veldhuis, M. J. W., de Baar, H. J. W., and van den Berg, C. M. G., 1998: Responses of marine phytoplankton in iron enrichment experiments in the northern North Sea and northeast Atlantic Ocean, Mar. Chem. 61, 229–242.CrossRefGoogle Scholar
  39. Tramontano, J. M., Scudlark, J. R., and Church, T. M., 1987: A method for the collection, handling and analysis of trace metals in precipitation, Environ. Sci. Technol. 21. 749–753.CrossRefGoogle Scholar
  40. Willey, J. D., Kieber, R. J., Williams, K. H., Crozier, J. S., Skrabal, S. A., and Avery, G. B., 2000: Temporal variability of iron speciation in coastal rainwater, J. Atmos. Chem. 37, 185–205.CrossRefGoogle Scholar
  41. Willey, J. D., Paerl, H. W., and Go, M., 1999: Impact of rainwater hydrogen peroxide on chlorophyll a content of surface Gulf Stream seawater off North Carolina, U.S.A., Mar. Ecol. Prog. Ser. 178, 145–150.Google Scholar
  42. Wu, J. and Boyle, E., 2002: Iron in the Sargasso Sea: Implications for the processes controlling dissolved Fe distribution in the ocean, Global Biogeochem. Cycles 16, 1–8.CrossRefGoogle Scholar
  43. Wu, J., Boyle, E., Sunda, W., and Wen, L., 2001: Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific, Science 293, 847–849.Google Scholar
  44. Wu, J. and Luther, G. W., 1996: Spatial and temporal distribution of iron in the surface waters of the northwestern Atlantic Ocean, Geochim. Cosmochim. Acta 60, 2729–2741.CrossRefGoogle Scholar
  45. Zhu, X. R., Prospero, J. M., and Millero, F., 1997: Diel variability of soluble Fe(II) and soluble total Fe in North African dust in the trade winds at Barbados, J. Geophys. Res. 102, 21297–21305.Google Scholar
  46. Zhuang, G., Duce, R. A., and Kester, D. R., 1990: The dissolution of atmospheric iron in surface seawater of the open ocean, J. Geophys. Res. 95, 16207–16216.Google Scholar
  47. Zhuang, G., Yi, Z., and Wallace, G. T., 1995: Iron (II) in rainwater, snow, and surface seawater from a coastal environment, Mar. Chem. 50, 41–50.CrossRefGoogle Scholar
  48. Zika, R. G., Moffett, J. W., Petasne, R. G., Cooper, W. J., and Saltzman, E. S., 1985: Spatial and temporal variations of hydrogen peroxide in Gulf of Mexico waters, Geochim. Cosmochim. Acta 49, 1173–1184.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Joan D. Willey
    • 1
  • Robert J. Kieber
    • 1
  • G. Brooks AveryJr.
    • 1
  1. 1.Department of Chemistry and Marine Science ProgramUniversity of North Carolina at WilmingtonWilmingtonU.S.A.

Personalised recommendations