Comparative investigation of the biocompatibility of various silicon nitride ceramic qualities in vitro

  • A. Neumann
  • T. Reske
  • M. Held
  • K. Jahnke
  • C. Ragoß
  • H. R. Maier


There is a controversy about the biocompatibility of silicon nitride ceramics contained in the literature, which appears to be related to a factor of the individual chemical composition of different qualities of silicon nitride ceramics and of the different surface properties. This study attempts to investigate the cytotoxicity of different qualities of industrial silicon nitride ceramics applying an L929-cell culture model in a direct contact assay combined with a cell viability assessment. Five different qualities of industrial standard silicon nitride ceramics were chosen for in vitro testing. The chemical composition was determined by EDS analysis. Different biomedically approved aluminium oxide qualities, a titanium alloy, glass and polyvinylchloride (PVC) served as control materials. L929 mice fibroblasts were incubated directly on the materials for 24 h, stained with bisbenzimide and propidium iodine for double fluorochromasia viability testing, and evaluated by inversion-fluorescence microscopy to control cell morphology, viability and cell counts compared to empty well values. Scanning electron microscopy was applied to additionally investigate cell morphology. There was no observation of cytotoxic effects on the silicon nitride ceramic samples; moreover cell morphology remained the same as on aluminium oxide and titanium. Viability testing revealed the presence of avital cells exclusively on PVC, which served as a negative control. Cell counts on all polished surfaces showed significantly higher numbers, whereas some rough surface samples showed significantly lower numbers. We conclude that silicon nitride ceramics show no cytotoxic effects and should be considered for biomedical application owing to its favourable physiochemical properties, especially its superior resistance to mechanical stress, which would be useful for compression loaded conditions. Polished surfaces would appear to promote advanced biocompatibility.


Titanium Alloy Silicon Nitride Viability Testing L929 Mouse Bisbenzimide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. DION, L. BORDENAVE, F. LEFEBRE, R. BAREILLE, C. BAQUEY, J. R. MONIES and P. HAVLIK, J. Mater. Sci.: Mater. Med. 5 (1994) 18.Google Scholar
  2. 2.
    P. GRISS, E. WERNER and J. HEIMKE, in "Mechanical Properties of Biomaterials" (John Wiley and Sons, New York, 1980) p. 217.Google Scholar
  3. 3.
    K. JAHNKE, D. PLESTER and G. HEIMKE, Biomaterials 4 (1983) 137.Google Scholar
  4. 4.
    G. HEIMKE and P. GRISS, Med. Biol. Eng. Comput. 18 (1980) 503.Google Scholar
  5. 5.
    D. PLESTER and K. JAHNKE, Am. J. Otol 3 (1981) 104.Google Scholar
  6. 6.
    C. R. HOWLETT, E. MCCARTNEY and W. CHINO, Clin. Orthop. 244 (1989) 293.Google Scholar
  7. 7.
    S. J. NORTHUP, in "Handbook of Biomaterials Evaluation. Scientific, Technical, and Clinical Testing of Implant Materials" (Macmillian Publishing Company, New York, 1988) p. 209.Google Scholar
  8. 8.
    S. A. ROSENBLUTH, G. R. WEDDINGTON, W. L. GUESS and J. AUTIAN, J. Phaim. Sci. 54 (1965) 156.Google Scholar
  9. 9.
    A. AMMAR A, Acta Neurochir. 72 (1984) 45.Google Scholar
  10. 10.
    A. DORAN, F. LAW, M. ALLEN and N. RUSHTON, Biomaterials 19 (1998) 751.Google Scholar
  11. 11.
    J. ELBEL, L. ECKERT, J. BLUM, E. WINTERMANTEL and H. EPPENBERGER, ibid. 21 (2000) 539.Google Scholar
  12. 12.
    H. KAWARA, Int. Dent. 33 (1983) 350.Google Scholar
  13. 13.
    P. MENGUCCI, G. MAJINI, A. DEBENEDITTIS and G. BIAGINI, Biomateiials 17 (1998) 1339.Google Scholar
  14. 14.
    A. NEUMANN and K. JAHNKE, Mat. Wiss Werkstofftech 34 (2003) 1052.Google Scholar
  15. 15.
    D. W. RICHERSON and P. M. STEPHAN, Mat. Sci. For. 47 (1989) 282.Google Scholar
  16. 16.
    M. AMARAL, M. A. LOPES, R. F. SILVA and J. SANTOS, Biomaterials 23 (2002) 857.Google Scholar
  17. 17.
    R. KUE, A. SOHRABI, D. NAGLE, C. FRONDOZA and D. HUNGERFORD, ibid. 20 (1999) 1195.Google Scholar
  18. 18.
    I. SVENSSON, E. ARTURSSON, P. LEANDERSON, R. BERGLIND and F. LINDGREN, Am. J. Ind. Med. 31 (1997) 335.Google Scholar
  19. 19.
    A. S. CHAWLA, J. Biomed. Mater. Res. 16 (1982) 501.Google Scholar
  20. 20.
    H. J. JOHNSON, S. J. NORTHUP, P. A. SEAGRAVES, P. J. GARVIN and R. F. WALLIN, ibid. 17 (1983) 571.Google Scholar
  21. 21.
    R. M. RICE, A. F. HEGYELI, S. J. GOURLAY, C. W. R. WADE, J. G. DILLON, H. JAFFE and R. K. KULKARNI, J. Biomed. Mazer. Res. 12 (1978) 43.Google Scholar
  22. 22.
    R. F. WALLIN and E. F. ARSCOTT, Scholar
  23. 23.
    R. I. JOHNSSON and A. F. HEGYELI, Ann NYAcad Sci. 146 (1968) 66.Google Scholar
  24. 24.
    J. TAS and G. WESTERNENG, J. Histochem. Cytochem. 29 (1981) 929.Google Scholar
  25. 25.
    S. A. LATT and G. STETTEN. ibid. 24 (1976) 24Google Scholar
  26. 26.
    H. A. CRISSMAN and J. A. STEINKAMP, Exper Cell Res. 173 (1987) 256.Google Scholar
  27. 27.
    A. SOHRABI, R. C. KUE, J. LIN, D. C. NAGLE, C. G. FRONDOZA and D. S. HUNGERFORD, in “Bioceramics”, Vol 11 (World Scientific Publishing, New York. 1998) p. 309.Google Scholar
  28. 28.
    R. E. WILSNACK, F. J. MEYER and J.G. SMITH, Biomat. Med. Dev. Art. Org. 1 (1973) 543.Google Scholar
  29. 29.
    U. GROSS, H. J. SCHMITZ, R. KINNE, F. R. FENDLER and V. STRUNZ in “Advances in Biomaterials 7: Biomaterials and Clinical Applications” (Elsevier, Amsterdam, 1987) p. 547.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • A. Neumann
    • 1
  • T. Reske
    • 1
  • M. Held
    • 1
  • K. Jahnke
    • 1
  • C. Ragoß
    • 2
  • H. R. Maier
    • 2
  1. 1.Department of OtorhinolaryngologyUniversity of EssenGermany
  2. 2.Institute for Ceramic Components in EngineeringGermany

Personalised recommendations