Skip to main content
Log in

Mechanically activated synthesis of ultrafine rods of HfB2 and milling induced phase transformation of monocrystalline anatase particles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanically activated synthesis of hafnium diboride HfB2 from partially hydrated hafnium tetrachloride “HfCl4” is first described. Monocrystalline rods with submicron to micron lengths and a diameter of about 100 nm are synthesized by annealing, at 1373 K, of powder mixtures of “HfCl4” and boron ground with steel tools. The monocrystalline rods grow parallel to the c-axis of the HfB2 structure from iron-rich grains of the activated powder and are defect-free. Facetted nanometer-sized single crystals are obtained instead when magnesium is added to the starting mixtures. The fractureless transformation of single-crystal anatase particles with different initial sizes into orthorhombic TiO2-II by milling is then described. Milling yields either monocrystalline anatase particles coated with a layer of nanograins of TiO2-II (grain size ∼10 nm) or fully transformed anatase particles according to the initial diameters of ∼150 nm and ∼25 nm respectively. The relevance of a milling parameter, namely the average power injected per unit volume of powder trapped during a collision, is finally emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Boldyrev, N. Z. Lyakhov, Yu. T. Pavlyukhin, E. V. Boldyreva, E. Yu. Ivanov and E. G. Avvakumov, Sov. Sci. Rev. B. Chem. {vn14} (1990) 105.

    Google Scholar 

  2. B. S. Murty and S. Ranganathan, Int. Mater. Rev. {vn43} (1998) 101.

    Google Scholar 

  3. E. Gaffet, F. Bernard, J. C. Niepce, F. Charlot, C. Gras, G. Le CaËr, J. L. Guichard, P. Delcroix, A. Mocellin and O. Tillement, J. Mater. Chem. {vn9} (1999) 305.

    Google Scholar 

  4. C. Suryanarayana, Progr. Mater. Sci. {vn46} (2001) 1.

    Google Scholar 

  5. L. Takacs, ibid. {vn47} (2002) 355.

    Google Scholar 

  6. T. Grigorieva, M. Korchagin and N. Lyakhov, Kona { vn20} (2002) 144.

    Google Scholar 

  7. Y. Chen, J. Fitz Gerald, J. S. Williams and S. Bulcock, Chem. Phys. Lett. {vn299} (1999) 260.

    Google Scholar 

  8. E. Barraud, Ph.D. Thesis, DeInstitut National Polytechnique de Lorraine, Nancy (2003); E. Barraud, S. BÉgin-Colin and G. Le CaËr (2003) in preparation.

  9. S. BÉgin-Colin, G. Le CaËr, A. Mocellin and M. Zandona, Phil. Mag. Lett. {vn69} (1994) 1.

    Google Scholar 

  10. S. BÉgin-Colin, T. Girot, G. Le CaËr and A. Mocellin, J. Solid State Chem. {vn149} (2000) 41.

    Google Scholar 

  11. T. Girot, X. Devaux, S. BÉgin-Colin, G. Le CaËr and A. Mocellin, Phil. Mag.A {vn81} (2001) 489.

    Google Scholar 

  12. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, Nature {vn410} (2001) 63.

    PubMed  Google Scholar 

  13. A. Calka and A. P. Radinski, J. Less-Common Met. {vn161} (1990) L23.

    Google Scholar 

  14. M. A. Morris and D. G. Morris, J. Mater. Sci. {vn26} (1991) 4687.

    Google Scholar 

  15. Y. Park, T. Hashimoto, T. Abe, R. Watanabe and T. Masumoto, Mater. Sci. Eng.A {vn181/182} (1994) 1291.

    Google Scholar 

  16. A. Corrias, G. Ennas, G. Marongiu, A. Musinu, G. Paschina and D. Zedda, ibid. {vn204} (1995) 211.

    Google Scholar 

  17. L. Takacs, Mater. Sci. Forum {vn225–227} (1996) 553.

    Google Scholar 

  18. K. Kudaka, K. Iuzumi and T. Sasaki, J. Ceram. Soc. Jpn. { vn107} (1999) 101.

    Google Scholar 

  19. K. Kudaka, K. Iizumi, T. Sasaki and S. Okada, J. Alloys Compd. {vn315} (2001) 104.

    Google Scholar 

  20. P. Millet and T. Hwang, J. Mater. Sci. {vn31} (1996) 351.

    Google Scholar 

  21. N. J. Welham, J. Amer. Ceram. Soc. {vn83} (2000) 1290.

    Google Scholar 

  22. Idem., Metall. Mater. Trans.A {vn31} (2000) 283.

    Google Scholar 

  23. X. Zhe and A. Hendry, J. Mater. Sci. Lett. {vn17} (1998) 687.

    Google Scholar 

  24. S. BÊgin-Colin, G. Le CaËr, F. Villieras, X. devaux, M. O. Simonnot, T. Girot and P. Weisbecker, J. Metastable and Nanocrystalline Mater. {vn12} (2002) 27.

    Google Scholar 

  25. R. M. Ren, Z. G. Yang and L. L. Shaw, J. Mater. Sci. {vn35} (2000) 6015.

    Google Scholar 

  26. A. Gajovic, M. Stubicar, M. Ivanda and K. Furic, J. Mol. Struct. {vn563} (2001) SI-315.

    Google Scholar 

  27. P. Bose, S. K. Pradhan and S. Sen, Mater. Chem. Phys. {vn80} (2003) 73.

    Google Scholar 

  28. J. Staun Olsen, L. Gerward and J. Z. Jiang, J. Phys. Chem. Sol. {vn60} (1999) 229.

    Google Scholar 

  29. S. Y. Chen and P. Shen, Phys. Rev. Lett. {vn89} (2002) 096106–1.

  30. T. Girot, S. Begin-Colin, X. Devaux, G. Le CaÄr and A. Mocellin, J. Mater. Synth. Process. {vn8} (2000) 139.

    Google Scholar 

  31. T. Girot, Ph.D. Thesis, Institut National Polytechnique de Lorraine, Nancy (2001).

  32. E. Gaffet and G. Le CaÄr, in “Encyclopedia of Nanoscience and Nanotechnology,” edited by H.S. Nalwa (American Scientific Publishers, Stevenson Ranch, California, USA, 2004) vol. 5, p. 91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bégin-Colin, S., Caër, G.L., Barraud, E. et al. Mechanically activated synthesis of ultrafine rods of HfB2 and milling induced phase transformation of monocrystalline anatase particles. Journal of Materials Science 39, 5081–5089 (2004). https://doi.org/10.1023/B:JMSC.0000039188.17862.58

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000039188.17862.58

Keywords

Navigation