Journal of Materials Science

, Volume 39, Issue 14, pp 4451–4457 | Cite as

Electrochemical growth of aligned N-chiral alkyl substituted polypyrrole micro-ribbons

  • Gaoyi Han
  • Gaoquan Shi
  • Jinying Yuan
  • Feng'en Chen


Aligned micro-ribbons of N-chiral alkyl substituted polypyrrole have been grown for the first time by electrochemical polymerization of methyl (S)-(+)-2-(1H-pyrrol-yl) propionate (1) and methyl (S)-(−)-3-phenyl-2-(1H-pyrrol-yl) propionate (2) in acetonitrile containing tetrabutylammonium perchlorate (TBAClO4) and camphor-10-sulfonic acid (CSA) enantiomer. The micro-ribbons stand upright on the working electrode surface in a high density. They have a length of 100–200 μm, a width of 20–50 μm and a thickness of 3–5 μm. Scanning electron microscopic (SEM) studies showed that the micro-ribbons were assembled by nanometer balls with diameters of 30–50 nm. A hole growing mechanism was suggested according to the SEM pictures recorded during the electrochemical growth process. The structures of the resulting polymers have been characterized by infrared and Raman spectroscopies.


Polymer Spectroscopy Methyl Scan Electron Microscopic Acetonitrile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Pool, Science 247 (1990) 1410.Google Scholar
  2. 2.
    M. X. Wan, J. Huang and Y. Q. Shen, Synth. Met. 101 (1999) 708.Google Scholar
  3. 3.
    C. R. Martin, Science. 266 (1994) 1961.Google Scholar
  4. 4.
    Z. Cai and C. R. Martin, J. Amer. Chem. Soc. 111 (1989) 4138.Google Scholar
  5. 5.
    R. V. Parthasarathy and C. R. Martin, Chem. Mater. 6 (1994) 1627.Google Scholar
  6. 6.
    J. Mansouri and R. P. Burford, J. Membr. Sci. 87 (1994) 23.Google Scholar
  7. 7.
    Z. X. Wei and M. X. Wan, Adv. Mater. 14 (2002) 1314.Google Scholar
  8. 8.
    S. S. Shihiratori, S. Mori and K. Ikezaki, Sens. Actuators B 49 (1998) 30.Google Scholar
  9. 9.
    M. Delvaux, J. Duchet, P.-Y. Stavaux, R. Legras and S. Demoustier-Champagne, Synth. Met. 113 (2000) 275.Google Scholar
  10. 10.
    J. Duchet, R. Legras and S. Demoustier-Champagne, ibid. 98 (1998) 113.Google Scholar
  11. 11.
    S. J. Chen, D. Y. Wang, C. W. Yuan, X. D. Wang, P. Y. Zhang and X. S. Gu, J. Mater. Sci. Lett. 19 (2000) 2157.Google Scholar
  12. 12.
    C. Jerome, D. Labaye, I. Bodart and R. Jerome, Synth. Met. 101 (1999) 3.Google Scholar
  13. 13.
    C. Jerome and R. Jerome, Angew. Chem. Int. Ed. 37 (1998) 2488.Google Scholar
  14. 14.
    G. A. Ozin, Adv. Mater. 4 (1992) 612.Google Scholar
  15. 15.
    S. Pleus and B. Schulte, J. Solid State Electrochem. 5 (2001) 522.Google Scholar
  16. 16.
    S. Pleus and M. Schwientek, Synth. Met. 95 (1998) 233.Google Scholar
  17. 17.
    M. Salmon and G. J. Bidan, Electrochem. Soc. 132 (1985) 1897.Google Scholar
  18. 18.
    M. Salmon, M. Saloma, G. Bidan and E. M. Genies, Electrochim. Acta. 14 (1989) 117.Google Scholar
  19. 19.
    F. Chen, P. Akhtar, L. A. P. Kane-Maguire and G. G. Wallace, Aust. J. Chem. 50 (1997) 39.Google Scholar
  20. 20.
    D. Delabouglise and F. Garnier, Synth. Met. 39 (1990) 117.Google Scholar
  21. 21.
    T. J. Bond, R. Jenkins, A. C. Ridley and P. C. Taylor, J. Chem. Soc. Perkin Trans. 1 (1993) 2241.Google Scholar
  22. 22.
    M. C. Corvo and M. M. A. Pereira, Tetrahedron Let. 43 (2002) 455.Google Scholar
  23. 23.
    M. Walter and L. Ramaley, Anal. Chem. 45 (1973) 165.Google Scholar
  24. 24.
    E. Larraz, M. I. Redondo, M. J. Gonzalez-Tejera, M. A. Raso, J. Tortajada, De La E. S. Blanca and M. V. Garcia, Synth. Met. 122 (2001) 413.Google Scholar
  25. 25.
    M. I. Redondo, E. S. De La Blanca, M. V. Garcia, M. A. Raso, J. Tortajada and M. J. Gonzalez-Tejera, ibid. 122 (2001) 431.Google Scholar
  26. 26.
    Y. C. Liu, B. J. Hwang, W. J. Jian and R. Santhanam, Thin. Solid. Film. 374 (2000) 85.Google Scholar
  27. 27.
    Y. C. Liu and B. J. Hwang, Synth. Met. 113 (2000) 203.Google Scholar
  28. 28.
    A. J. G. Zarbin, M.-A. De Paoli and O. L. Alves, ibid. 99 (1999) 227.Google Scholar
  29. 29.
    Y. Fukukawa, S. Tazawa, Y. Fujii and I. Harada, ibid. 24 (1988) 329.Google Scholar
  30. 30.
    C. M. Jenden, R. G. Davidson and T. G. Turner, Polymer. 34 (1993) 1649.Google Scholar
  31. 31.
    C. J. Zhong, C. Q. Tian and Z. W. Tian, J. Phys. Chem. 94 (1990) 113.Google Scholar
  32. 32.
    A. B. GonÇalves, A. S. Mangrich and A. J. G. Zarbin, Synth. Met. 114 (2000) 119.Google Scholar
  33. 33.
    S. Asavapiriyanont, G. K. Chandler, G. A. Gunawardena and D. Pletcher, J. Electroana. Chem. 177 (1984) 229.Google Scholar
  34. 34.
    S. Demoustier-Champagne, E. Ferain, C. Jerome, R. Jerome and R. Legras, Eur. Polym. J. 34 (1998) 1767.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Gaoyi Han
    • 1
  • Gaoquan Shi
  • Jinying Yuan
  • Feng'en Chen
  1. 1.Department of ChemistryTsinghua UniversityBeijingPeople's Republic of China; Institute of Molecular Science, Shanxi University, Taiyuan 030006, People's Republic of China

Personalised recommendations