Skip to main content
Log in

Carbon–carbon interactions in iron

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon atoms occupy interstitial sites in iron so that the configurations of any solid-solution at constant composition depend solely on the distribution of carbon atoms on the interstitial sub-lattice, this in turn being influenced by interactions between carbon atoms in close proximity. The carbon–carbon interaction energy, which influences the distribution of carbon atoms, is reviewed with a view to understanding the nature of the interaction and to highlight some recent developments in the subject. It appears that the C–C interaction energy for ferrite cannot be deduced from the thermodynamic data currently available, primarily because of the very low solubility of carbon in ferrite. On the other hand, there is ample evidence to support the view that the corresponding energy for austenite is consistent with a strong repulsion between near neighbour pairs of carbon atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kikuchi Phys. Rev. 81 (1951) 988.

    Google Scholar 

  2. R. B. McLellan and W. W. Dunn J. Phys. Chem. Solids 30 (1969) 2631.

    Google Scholar 

  3. W. W. Dunn and R. B. McLellan Metall. Trans. 1 (1970) 1263.

    Google Scholar 

  4. H. K. D. H. Bhadeshia Mater. Sci. Techn. 14 (1998) 273.

    Google Scholar 

  5. H. K. D. H. Bhadeshia Metal Sci. 16 (1982) 167.

    Google Scholar 

  6. Y. Mou and H. I. Aaronson Acta Metall. 37 (1989) 757.

    Google Scholar 

  7. G. J. Shiflet, J. R. Bradley and H. I. Aaronson Metall. Trans. A 9A (1978) 999.

    Google Scholar 

  8. A. D. Cromwell J. Chem. Phys. 29 (1958) 446.

    Google Scholar 

  9. A. H. Cottrell, “Chemical Bonding in the Transition Metal Carbides” (Institute of Materials, London, 1995).

    Google Scholar 

  10. K. Oda, H. Fujimura and H. Ino J. Phys. Cond. Matt. 6 (1994) 679.

    Google Scholar 

  11. A. L. Sozinov, A. G. Balanyuk and V. G. Gavriljuk Acta Mater. 45 (1997) 225.

    Google Scholar 

  12. C. Wells, W. Batz and R. F. Mehl Trans. AIME 188 (1950) 533.

    Google Scholar 

  13. R. P. Smith Acta Metall. 1 (1953) 579.

    Google Scholar 

  14. R. H. Siller and R. B. McLellan ibid. 19 (1971) 671.

    Google Scholar 

  15. H. K. D. H. Bhadeshia Metal Sci. 15 (1981) 477.

    Google Scholar 

  16. S. S. Babu and H. K. D. H. Bhadeshia J. Mater. Sci. Lett. 14 (1995) 314.

    Google Scholar 

  17. C. Zener Phys. Rev. 74 (1948) 639.

    Google Scholar 

  18. R. A. Johnson and A. C. Damask Acta Metall. 12 (1964) 443.

    Google Scholar 

  19. R. A. Johnson, G. J. Dienes and A. C. Damask Acta Metall. 12 (1964) 1215.

    Google Scholar 

  20. R. A. Johnson Acta Metall. 13 (1965) 1259.

    Google Scholar 

  21. R. A. Johnson Acta Metall. 15 (1967) 513.

    Google Scholar 

  22. D. Keefer and C. Wert J. Phys. Soc. Jpn. 18 (1963) 110.

    Google Scholar 

  23. D. Keefer Acta Metall. 11 (1963) 489.

    Google Scholar 

  24. R. A. Johnson Phys. Rev. 134 (1964) A1329.

    Google Scholar 

  25. V. Rosato Acta Metall. 37 (1989) 2759.

    Google Scholar 

  26. P. Havtojarvi, J. Johansson, A. Vehanen, J. Yli-Kauppila and P. Moser Phys. Rev. Lett. 44 (1980) 1326.

    Google Scholar 

  27. F. E. Fujita and A. C. Damask Acta Metall. 12 (1964) 331.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhadeshia, H.K.D.H. Carbon–carbon interactions in iron. Journal of Materials Science 39, 3949–3955 (2004). https://doi.org/10.1023/B:JMSC.0000031476.21217.fa

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000031476.21217.fa

Keywords

Navigation