Skip to main content
Log in

Flow-Injection Determination of Elemental Iodine by Polyvinyl Alcohol

  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Complex formation between elemental iodine and polyvinyl alcohol was studied under flow conditions. The formation of substances with a weak hyperchromic effect in the UV and visible regions was detected. It was shown that this reaction could be used under flow conditions provided the gel-forming ability and viscosity of the polyvinyl alcohol solution were reduced by adding isopropanol and 6% dimethylsulfoxide. It was found that the reaction efficiency under flow conditions could be monitored using a new method for the determination of the dispersion coefficient of a sample based on comparison between standard and “flow” absorptivity coefficients. Because of the effect of nonequilibrium factors, it turns out that the best calibration function is a nonlinear one. The throughput capacity of the method is 140 samples per hour, and the limit of detection is 60 ng/mL. The high selectivity for chlorides allows one to determine iodine and its species in seawater and to monitor its concentration in white salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ivanov, V.V., Ekologicheskaya geokhimiya elementov (Ecological Geochemistry of Elements), vol. 3: Redkie p-elementy (Rare p-Elements), Moscow: Nedra, 1996, pp. 316, 321.

    Google Scholar 

  2. Korzh, V.D., Geokhimiya elementnogo sostava gidrosfery (Geochemistry of Elemental Composition of the Atmosphere), Moscow: Nauka, 1991, p. 131.

  3. Agadzhanyan, N.A. and Skal'nyi, A.V., Khimicheskie elementy v srede obitaniya cheloveka i ekologicheskii portret cheloveka (Chemical Elements in the Environment and Environmental Portrait of a Human Being), Moscow: KMK, 2001.

  4. Fogg, A.G., Wang, X., and Tyson, J.F., Analyst (Cambridge, U.K.), 1989, vol. 114, p. 119.

    Google Scholar 

  5. Nogueira, A.R. de Araujo, Mockiuti, F., De Souza, G.B., and Primavesi, O., Anal. Sci., 1998, vol. 14, no. 3, p. 559.

    Google Scholar 

  6. Oguma, K., Kitada, K., and Kuroda, R., Microchim. Acta, 1993, vol. 110, nos. 1-3, p. 71.

    Google Scholar 

  7. Nacapricha, D., Muangkaew, S., Ratanawimarnwong, N., Shiowatana, J., and Grudpan, K., Analyst (Cambridge, U.K.), 2001, vol. 126, no. 1, p. 121.

    Article  PubMed  Google Scholar 

  8. Zhang, Y.P., Yuan, D.X., Chen, J.X., Lan, T.S., and Chen, H.Q., Clin. Chem. (Washington, D.C.), 1996, vol. 42, no. 12, p. 2021.

    PubMed  Google Scholar 

  9. Rezaei, B., Anal. Lett., 2000, vol. 33, no. 12, p. 2553.

    Google Scholar 

  10. Liu, G.J., Li, J.X., and Zhao, X.M., Geostand. Newslett., 1995, vol. 19, no. 2, p. 215.

    Google Scholar 

  11. Burguera, J.L., Brunetto, M.R., Contreras, Y., Burguera, M., Gallignani, M., and Carrero, P., Talanta, 1996, vol. 43, no. 6, p. 839.

    Article  Google Scholar 

  12. Ensafi, A.A. and Dehaghi, G.B., Anal. Sci., 2000, vol. 16, no. 1, p. 61.

    Google Scholar 

  13. Stuerup, S. and Buchert, F., Fresenius' J. Anal. Chem., 1996, vol. 354, no. 3, p. 323.

    Google Scholar 

  14. Anderson, K.A., Casey, B., Diaz, E., Markowski, P., and Wright, B., J. AOAC Int., 1996, vol. 79, no. 3, p. 751.

    Google Scholar 

  15. Dolan, S.P., Sinex, S.A., Capar, S.G., Montasar, A., and Clifford, R.H., Anal. Chem., 1991, vol. 63, no. 21, p. 2539.

    PubMed  Google Scholar 

  16. Nakamara, T., Yamada, S., and Wasa, T., Appl. Spectrosc., 1990, vol. 44, no. 10, p. 1673.

    Google Scholar 

  17. Dan, D., Wan, J., and Du, G., Anal. Lab., 1991, vol. 10, no. 2, p. 59.

    Google Scholar 

  18. Davey, D.E., Mulcahy, D.E., and O'Connel, G.R., Talanta, 1990, vol. 37, p. 313.

    Article  Google Scholar 

  19. Hassan, S.S.M. and Marzouk, S.A.M., Electroanalysis (N. Y.), 1993, vol. 5, nos. 9-10, p. 855.

    Google Scholar 

  20. Jakmunee, J. and Grudpan, K., Anal. Chim. Acta, 2001, vol. 438, nos. 1-2, p.299.

    Article  Google Scholar 

  21. Pratt, K.W. and Johnson, D.C., Anal. Chim. Acta, 1983, vol. 148, p. 87.

    Article  Google Scholar 

  22. Laitinen, G.A., Khimicheskii analiz (Chemical Analysis), Moscow: Khimiya, 1966.

  23. Ushakov, S.N., Polivinilovyi spirt i ego proizvodnye (Polyvinyl Alcohol and Its Derivatives), Moscow: Akad. Nauk SSSR, 1960, vol. 1.

  24. Nikolaev, A.F. and Okhrimenko, G.I., Vodorastvorimye polimery (Water-Soluble Polymers), Moscow: Khimiya, 1979.

  25. Noguchi, H., Jyodai, H., and Matsuzawa, S., J. Polym. Sci., Part B: Polym. Phys., 1997, vol. 35, p. 1701.

    Google Scholar 

  26. Inczedy, J., Analytical Application of Complex Equilibria, Budapest: Akademiai Kiado, 1976. Translated under the title Primenenie kompleksov v analiticheskoi khimii, Moscow: Mir, 1979.

  27. Kuznetsov, V.V., Zh. Anal. Khim. , 2002, vol. 57, no. 5, p. 471.

    Google Scholar 

  28. Echols, R.T. and Tyson, J.F., Anal. Chim. Acta, 1994, vol. 286, no. 2, p. 169.

    Article  Google Scholar 

  29. Karlberg, B. and Pacey, G.E., Flow Injection Analysis: A Practical Guide, Amsterdam: Elsevier, 1989.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, V.V., Ermolenko, Y.V. & Seffar, L. Flow-Injection Determination of Elemental Iodine by Polyvinyl Alcohol. Journal of Analytical Chemistry 59, 688–693 (2004). https://doi.org/10.1023/B:JANC.0000035285.81722.2f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JANC.0000035285.81722.2f

Keywords

Navigation