Advertisement

Journal of Analytical Chemistry

, Volume 59, Issue 3, pp 234–242 | Cite as

Effect of the Pd–Mg Modifier, Magnetic Field, and Gas Flows on the Dynamics of Matrix Vapors in a Transversely Heated Graphite Furnace Atomizer

  • A. V. Voloshin
  • A. Kh. Gil'mutdinov
  • Yu. A. Zakharov
  • A. A. Sevast'yanov
Article
  • 29 Downloads

Abstract

Shadow spectral filming is used to study the spatiotemporal dynamics of the formation and dissipation of vapors of potassium sulfate and aluminum and indium nitrates in a transversely heated graphite furnace atomizer. The integrated platform, the Pd–Mg modifier, the internal flow of the sheath gas, the magnetic field of the nonselective background corrector, and the diffusion of oxygen from the ambient air are responsible for specific nonuniformities in the spatial structure of the vapor cloud. The nonuniformities result to a large extent from the transverse nonisothermal conditions of the graphite furnace. The explosive splashes of aluminum vapors interfering with the analysis are generated at the cold side walls of the graphite furnace, where the vapors are condensed in the process, rather than on the particles of the dry residue of the sample. The beating of the magnetic-field induction inside the graphite furnace atomizer caused by the overlapping of the fields of the heating current (50 Hz) and the background corrector (54 Hz) results in low-frequency (4–5 Hz) oscillations of the spatial position of the vapor cloud. The matrix modifier can stimulate these oscillations.

Keywords

Explosive Graphite Furnace Background Corrector Internal Flow Spatiotemporal Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Gil'mutdinov, A.Kh., Zakharov, Yu.A., Ivanov, V.P., and Voloshin, A.V., Zh. Anal. Khim., 1993, vol. 48, p. 28.Google Scholar
  2. 2.
    Gil'mutdinov, A.Kh., Zakharov, Yu.A., Ivanov, V.P., and Voloshin, A.V., Zh. Anal. Khim., 1993, vol. 48, p. 813.Google Scholar
  3. 3.
    Gil'mutdinov, A.Kh., Zakharov, Yu.A., Ivanov, V.P., and Voloshin, A.V., Zh. Anal. Khim., 1993, vol. 48, p. 1906.Google Scholar
  4. 4.
    Gil'mutdinov, A.Kh., Zakharov, Yu.A., Ivanov, V.P., Voloshin, A.V., and Dittrikh, K., Zh. Anal. Khim., 1994, vol. 49, p. 150.Google Scholar
  5. 5.
    Gil'mutdinov, A.Kh., Zakharov, Yu.A., Ivanov, V.P., and Voloshin, A.V., Zh. Anal. Khim.,1994, vol. 49, p. 157.Google Scholar
  6. 6.
    Gil'mutdinov, A.Kh., Zakharov, Yu.A., Ivanov, V.P., Voloshin, A.V., and Dittrikh, K., Zh. Anal. Khim., 1994, vol. 49, p. 361.Google Scholar
  7. 7.
    Frech, W. and Baxter, D., Spectrochim. Acta, Part B, 1996, vol. 51, p. 961.Google Scholar
  8. 8.
    Hughes, D., Chakrabarti, C., Lamoureux, M., Hutton, C., Golttz, D., Sturgeon, R., Gregoire, C., and Gilmutdinov, A., Spectrochim. Acta, Part B, 1996, vol. 51, p. 973.Google Scholar
  9. 9.
    Voloshin, A.V., Gil'mutdinov, A.Kh., and Zakharov, Yu.A., Zh. Anal. Khim., 2004, no. 2. p. 154.Google Scholar
  10. 10.
    Masera, E., Mauchien, P., and Lerat, Y., Spectrochim. Acta, Part B, 1996, vol. 51, p. 1007.Google Scholar
  11. 11.
    Masera, E., Mauchien, P., and Remy, B., J. Anal. At. Spectrom., 1996, vol. 11, p. 213.Google Scholar
  12. 12.
    Hadgu, N., Gustafsson, J., Frech, W., and Axner, O., Spectrochim. Acta, Part B, 1998, vol. 53, p. 923.Google Scholar
  13. 13.
    Welz, B., Schlemmer, G., and Mudakavi, J., J. Anal. At. Spectrom., 1992, vol. 7, p. 1257.Google Scholar
  14. 14.
    Cabon, J. and Le Bihan, A., Spectrochim. Acta, Part B, 1995, vol. 50, p. 1703.Google Scholar
  15. 15.
    De Loos-Vollebregt, M.T.C. and Vrouwe, E.X., Spectrochim. Acta, Part B, 1997, vol. 52, p. 1341.Google Scholar
  16. 16.
    Tang, S., Parsons, P., and Slavin, W., Spectrochim. Acta, Part B, 1997, vol. 52, p. 1351.Google Scholar
  17. 17.
    Welz, B., Bozsai, G., Sperling, M., and Radziuk, B., J. Anal. At. Spectrom., 1992, vol. 7, p. 505.Google Scholar
  18. 18.
    Mofolo, R.M., Katskov, D.A., Tittarelli, P., and Grotti, M., Spectrochim. Acta, Part B, 2001, vol. 56, p. 375.Google Scholar
  19. 19.
    Sturgeon, R. and Berman, S., Anal. Chem., 1980, vol. 52, p. 1049.Google Scholar
  20. 20.
    Gilmutdinov, A.Kh., Nagulin, K.Yu., and Zakharov, Yu.A., J. Anal. At. Spectrom., 1994, vol. 9, p. 643.Google Scholar
  21. 21.
    Gilmutdinov, A.Kh., Chakrabarti, C.L., Hutton, J.C., and Mrasov, R.M., J. Anal. At. Spectrom., 1992, vol. 7, p. 1047.Google Scholar
  22. 22.
    L'vov, B.V., Spectrochim. Acta, Part B, 1993, vol. 48, p. 1633.Google Scholar
  23. 23.
    L'vov, B.V. and Savin, A.S., Zh. Anal. Khim., 1982, vol. 37, p. 211.Google Scholar
  24. 24.
    L'vov, B.V., Vasilevich, A.A., Dyakov, A.O., Lam,J.W.H., and Sturgeon, R.E., J. Anal. At. Spectrom., 1999, vol. 14, p. 1019.Google Scholar
  25. 25.
    L'vov, B.V., Dyakov, A.O., Vasilevich, A.A., Lam,J.W.H., and Sturgeon, R.E., J. Anal. At. Spectrom., 2000, vol. 15, p. 115.Google Scholar
  26. 26.
    Lamoureux, M.M., Chakrabarti, C.L., Hutton, J.C., Gilmutdinov, A.Kh., Zakharov, Yu.A., and Gregoire, D.C., Spectrochim. Acta, Part B, 1995, vol. 50, p. 1847.Google Scholar
  27. 27.
    Gil'mutdinov, A.Kh., Zakharov, Yu.A., and Ivanov, V.P., Zavod. Lab., 1989, no. 11, p. 31.Google Scholar
  28. 28.
    L'vov, B.V., Spectrochim. Acta, Part B, 1996, vol. 51, p. 533.Google Scholar
  29. 29.
    Zakharov, Yu.A., Gilmutdinov, A.Kh., Voloshin, A.V., Frech, W., and Axner, O., Spectrochim. Acta, Part B, 2004 (in press).Google Scholar
  30. 30.
    Frech, W. and L'vov, B., Spectrochim. Acta, Part B, 1993, vol. 48, p. 1371.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • A. V. Voloshin
    • 1
  • A. Kh. Gil'mutdinov
    • 1
  • Yu. A. Zakharov
    • 1
  • A. A. Sevast'yanov
    • 1
  1. 1.Physics FacultyKazan State UniversityKazanRussia

Personalised recommendations