Skip to main content
Log in

Cell Configurations for Performance Evaluation in Planar Solid Oxide Fuel Cells

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Cell configurations with asymmetric and symmetric electrode geometries and different reference electrode positions were investigated on 50 mm×50 mm planar solid oxide fuel cells (SOFC). The reliability and accuracy of the polarization performance of individual electrodes were studied with respect to the electrode geometry and the reference electrode position. The results indicate that a centrally located reference electrode creates inactive electrolyte regions in the center of the cell, pushing the equipotential lines close to the electrode–electrolyte interface region and thus introducing error in the measurement of polarization performance. The potential of reference electrodes located at the corner of the electrode coating was not stable due to the steam build-up in the reference electrode region. Cells with a symmetric electrode geometry arrangement and reference electrodes located at the side of the working electrodes, away from the receiving end of the fuel and oxidant gases, were found to be suitable for performance evaluation in planar SOFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Reference

  1. S. Prindahl and M. Mogensen, J. Electrochem. Soc. 145 (1998) 2431.

    Google Scholar 

  2. D. M. Reed, H. U. Anderson and W. Huebner, J. Electrochem. Soc. 143 (1996) 1558.

    Google Scholar 

  3. M. Nagata, Y. Itoh and H. Iwahara, Solid State Ionics 67 (1994) 215.

    Google Scholar 

  4. S. P. Jiang and S. P. S. Badwal, J. Electrochem. Soc. 144 (1997) 3777.

    Google Scholar 

  5. J. Divisek, L. G. J. de Haart, P. Holtappels, T. Lennartz, W. Malléner, U. Stimming and K. Wippermann, J. Power Sources 49 (1994) 257.

    Google Scholar 

  6. A. Khandar, S. Elangovan and M. Liu, Solid State Ionics 52 (1992) 57.

    Google Scholar 

  7. G. Hsieh, T. O. Mason, E. J. Garbozi and L. R. Pederson, Solid State Ionics 96 (1997) 153.

    Google Scholar 

  8. S. P. Jiang, J. G. Love and L. Apateanu, Solid State Ionics 160 (2003) 15.

    Google Scholar 

  9. S. P. Jiang and Y. Ramprakash, Solid State Ionics 116 (1999) 145.

    Google Scholar 

  10. D. Ghosh, G. Wang, R. Brule, E. Tang and P. Huang, in S. C. Singhal and M. Dokiya (Eds), SOFC-VI, PV 99–19, The Electrochemical Society, Pennington, NJ (1999), p. 822.

    Google Scholar 

  11. S. P. Jiang, J. Power Sources 124 (2003) 390.

    Google Scholar 

  12. S. P. Jiang, J. P. Zhang, Y. Ramprakash, D. Milosevic and K. Wilshier, J. Mater. Sci. 35 (2000) 2735.

    Google Scholar 

  13. S. P. Jiang, P. J. Callus and S. P. S. Badwal, Solid State Ionics 132 (2000) 1.

    Google Scholar 

  14. S. B. Adler, B. T. Henderson, M. A. Wilson, D. M. Taylor and R. E. Richards, Solid State Ionics 134 (2000) 35.

    Google Scholar 

  15. S. P. Jiang, J. P. Zhang, L. Apateanu and K. Foger, J. Electrochem. Soc. 147 (2000) 4013.

    Google Scholar 

  16. S. P. Jiang, J. G. Love and S. P. S. Badwal, in J. Nowotny and C. C. Sorrell (Eds), 'Electrical Properties of Oxide Materials' (Trans. Tech. Publications, 1997), p. 81.

  17. S. P. Jiang and J. G. Love, Solid State Ionics 138 (2001) 183.

    Google Scholar 

  18. S. W. Zha, C. R. Xia and G. Y. Meng, J. App. Electrochem. 31 (2001) 93.

    Google Scholar 

  19. O. Kubaschewski and C. B. Alcock, 'Metallurgical Thermochemistry' (Pergamon Press, Oxford, UK, 1979), p. 380.

    Google Scholar 

  20. F. T. Ciacchi, K. M. Crane and S. P. S. Badwal, Solid State Ionics 73 (1994) 49.

    Google Scholar 

  21. T. Kenjo and Y. Kanehira, Solid State Ionics 148 (2002) 1.

    Google Scholar 

  22. J. Fleig and J. Maier, J. Electrochem. Soc. 144 (1997) L302.

    Google Scholar 

  23. S. P. Jiang, J. Electrochem. Soc. 148 (2001) A887.

    Google Scholar 

  24. Y. J. Leng, S. H. Chan, K. A. Khor and S. P. Jiang, J. Appl. Electrochem. 34 (2004) 409.

    Google Scholar 

  25. Y. Jiang, A. V. Virkar and F. Zhao, J. Electrochem. Soc. 148 (2001) A1091.

    Google Scholar 

  26. K. Eguchi, Y. Kunisa, K. Adachi and H. Arai, J. Electrochem. Soc. 143 (1996) 3699.

    Google Scholar 

  27. S. H. Chan, X. J. Chen and K. A. Khor, J. Appl. Electrochem. 31 (2001) 1163.

    Google Scholar 

  28. S. B. Adler, J. Electrochem. Soc. 149 (2002) E166.

    Google Scholar 

  29. J. Winkler, P. V. Hendriksen, N. Bonanos and M. Mogensen, J. Electrochem. Soc. 145 (1998) 1184.

    Google Scholar 

  30. J. Fleig and J. Maier, Solid State Ionics 94 (1997) 199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, S. Cell Configurations for Performance Evaluation in Planar Solid Oxide Fuel Cells. Journal of Applied Electrochemistry 34, 1045–1055 (2004). https://doi.org/10.1023/B:JACH.0000042671.56349.da

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000042671.56349.da

Navigation