Advertisement

Journal of Applied Electrochemistry

, Volume 34, Issue 6, pp 653–658 | Cite as

Photocatalytic and Photoelectrocatalytic Performance of 1% Pt Doped TiO2 for the Detoxification of Water

  • H. SelcukEmail author
  • W. Zaltner
  • J.J. Sene
  • M. Bekbolet
  • M.A. Anderson
Article

Abstract

The degradation of formic acid (HCOOH), FA (a surrogate contaminant) using titanium dioxide (TiO2) and 1% Pt doped TiO2 electrodes, prepared by sol—gel methods, was investigated in a photoelectrocatalytic (PEC) system in order to determine the effect of Pt doping on the oxidation potential of TiO2. Pt doping shifts the position of band edge and therefore the direct and indirect oxidation potentials of TiO2 in PEC systems. As a result, the degradation of formic acid via the generation of hydrogen peroxide production on 1%Pt—TiO2 electrodes was much better than that on non-doped electrodes. The degradation of HCOOH was also examined with respect to the faradaic efficiency of this process. It was found that the 1%Pt—TiO2 photoanode had a 30% higher efficiency than that of non-doped TiO2 photoanodes.

oxidation photoelectrocatalytic photoanode photocurrent Pt-doped TiO2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Fujishima and K. Honda, Nature 238 (1972) 37.CrossRefGoogle Scholar
  2. 2.
    K. Fujihara, T. Ohno and M. Matsumara, J. Chem. Soc. Faraday Trans. 94 (1998) 3705.CrossRefGoogle Scholar
  3. 3.
    R. Meissner, R. Memming and B. Kastening, Chem. Phy. Letts. 27 (1986) 419.Google Scholar
  4. 4.
    M. Bekbolet and G. Ozkosemen, Water Sci. Res. 33 (1996) 189.CrossRefGoogle Scholar
  5. 5.
    S.D. Richardson, A.D. Thruston, T.W. Collette, K.S. Patterson, B.W. Lykins and J.C. Ireland, Environ. Sci. Technol. 30 (1996) 3327.CrossRefGoogle Scholar
  6. 6.
    B.R. Eggins, F.L. Palmer and J.A. Byrne, Water Res. 31 (1997) 1223.CrossRefGoogle Scholar
  7. 7.
    J.C. Lee, M.S. Kim and B.W. Kim, Water Res. 36 (2002) 1776.Google Scholar
  8. 8.
    G.S. Shaphard, S. Stockenstrom, D. de Villiers, W.J. Engelbrecht and G.F. Wessels, Water Res. 36 (2002) 140.Google Scholar
  9. 9.
    J. Krysa, L. Vodehnal and L. Jirkovsky, J. Appl. Electrochem. 29 (1999) 429.Google Scholar
  10. 10.
    D.H. Kim and M.A. Anderson, Environ Sci. Technol. 28 (1994) 479.CrossRefGoogle Scholar
  11. 11.
    K. Vinodgopal, U. Sta.ord, K.A. Gray and P.V. Kamat, J. Phys. Chem. 98 (1994) 6797.CrossRefGoogle Scholar
  12. 12.
    I.M. Buterfield, P.A. Christensen, A. Hamnett, K.E. Shaw, G.M.Walker and S.A. Walker, J. Appl. Electrochem. 27 (1997) 385.Google Scholar
  13. 13.
    J.M. Kesselman, N.S. Lewis and M.R. Hoffmann, Environ. Sci. Technol. 31 (1997) 2298.CrossRefGoogle Scholar
  14. 14.
    R. Pelegrini, J. Reyes, N. Duran, P.P. Zamora and A.R. De Andrade, J. Appl. Electrochem. 30 (2000) 953.CrossRefGoogle Scholar
  15. 15.
    X.Z. Li, F.B. Li, C.M. Fan and Y.P. Sun, Water Res. 36 (2002) 2215.Google Scholar
  16. 16.
    M.V.B. Zanoni, J.J. Sene and M.A. Anderson, J. Photochem. Photobiol. 157 (2002) 55.Google Scholar
  17. 17.
    J.C. Harper, T.A. Egerton, T.P. Curtis and J. Gunlazuardi, J. Appl. Electrochem. 31 (2001) 623.Google Scholar
  18. 18.
    P.S.M. Dunlop, J.A Byrne, N. Manga and B.R Eggins, J. Photochem. Photobiol. A 148 (2002) 355.Google Scholar
  19. 19.
    P.A. Christensen, T.P. Curtis, T.A. Egerton, S.A.M. Kosa and J.R. Tinlin, Appl. Catal. B 41 (2003) 371.Google Scholar
  20. 20.
    O.H. Finklea, Photoelectrochemistry 60 (1983) 325.Google Scholar
  21. 21.
    K. Sayama and H. Arakava, J. Chem. Soc. Faraday Trans. 93 (1997) 1647.CrossRefGoogle Scholar
  22. 22.
    Q. Xu and M.A. Anderson, J. Mater. Res. 6 (1991) 1073.Google Scholar
  23. 23.
    R. Candal, W.A. Zeltner and M.A. Anderson, J. Environ. Eng. 3 (1999) 906.Google Scholar
  24. 24.
    M. Bekbolet, J. Environ. Sci. Health A 31 (1996) 845.Google Scholar
  25. 25.
    R. Candal, W.A. Zeltner and M.A. Anderson, Environ. Sci. Technol. 34 (2000) 3443.CrossRefGoogle Scholar
  26. 26.
    J. Krysa and J. Jirkovsky, J. Appl. Electrochem. 32 (2002) 591.Google Scholar
  27. 27.
    G. Waldner, J. Krysa, J. Jirkovsky and G. Grabner, Int. J. Photoenergy 5 (2003) 115.Google Scholar
  28. 28.
    C.K. Scheck and F.H. Frimmel, Water Res. 29 (1995) 2346.CrossRefGoogle Scholar
  29. 29.
    P. Clechet, C. Martelet, J.R. Martin and R. Olier, Electrochim. Acta 24 (1979) 457.CrossRefGoogle Scholar
  30. 30.
    J.M. Herrmann, J. Dissier and P. Pichat, J. Chem. Soc. Faraday Trans. 1 (1981) 2815.Google Scholar
  31. 31.
    H. Gericher and A. Heller, J. Electrochem. Soc. 139 (1992) 113.Google Scholar
  32. 32.
    J. Kiwi and M. Gratzel, J. Phys. Chem. 91 (1987) 6673.CrossRefGoogle Scholar
  33. 33.
    J.R. Harbour, J. Tromp and M.L. Hair, Can J. Chem. 63 (1985) 204.Google Scholar
  34. 34.
    G. Munuera, A.R. Gonzalezlipe and A. Fernandez, J. Chem. Soc. Faraday Trans. 1 (1989) 1297.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • H. Selcuk
    • 1
    Email author
  • W. Zaltner
    • 2
  • J.J. Sene
    • 2
  • M. Bekbolet
    • 3
  • M.A. Anderson
    • 2
  1. 1.Environmental Engineering DepartmentIstanbul Technical UniversityMaslak, IstanbulTurkey
  2. 2.Environmental Chemistry and Technology ProgramUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Bogazici University Institute of Environmental SciencesBebek, IstanbulTurkey

Personalised recommendations