Journal of Applied Electrochemistry

, Volume 34, Issue 6, pp 583–589 | Cite as

Electrooxidation of Aqueous p-Methoxyphenol on Lead Oxide Electrodes

  • C. Borrás
  • P. Rodríguez
  • T. Laredo
  • J. Mostany
  • B.R. Scharifker
Article

Abstract

Oxidation of p-methoxyphenol (pmp) in aqueous solution on bismuth-doped lead oxide was studied, and the effects of the initial pmp concentration, applied potential and hydrodynamic conditions upon the oxidation rate were identified. Under all conditions studied, the concentration decay of pmp during electrooxidation follows first—order reaction kinetics. Through analysis of rotating ring-disc currents, the faradaic efficiencies for oxidation at various concentrations of pmp in solution were determined. Using u.v.—vis. and H1RMN spectroscopy for solution analysis, it is shown that partial oxidation of pmp occurs in chloride-free aqueous solutions. The principal products were p-benzoquinone and maleic acid, with low production of CO2 up to 1000 C dm−3 charge. Mineralization to CO2 was considerably improved upon addition of chloride ions to the solution. In situ FTIR spectra of the electrode surface during electrolysis indicated that the presence of chloride ions enhances the mineralization of pmp by reaction of benzoquinone with anodically generated hypochlorite.

electrocatalysis metal oxide anode oxidation of organics p-methoxyphenol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Sharifian and D.W. Kirk, J. Electrochem. Soc. 133 (1986) 921.Google Scholar
  2. 2.
    M. Gattrell and D.W. Kirk, J. Electrochem. Soc. 140 (1993) 1534.Google Scholar
  3. 3.
    B.J. Hwang and K.L. Lee, J. Appl. Electrochem. 26 (1996) 153.CrossRefGoogle Scholar
  4. 4.
    N.B. Tahar and A. Savall, J. Appl. Electrochem. 29 (1999) 277.Google Scholar
  5. 5.
    Ch. Comninellis and C. Pulgarin, J. Appl. Electrochem. 23 (1993) 108.CrossRefGoogle Scholar
  6. 6.
    M. Gattrell and D.W. Kirk, J. Electrochem. Soc. 140 (1993) 903.Google Scholar
  7. 7.
    D.C. Johnson, J. Feng and L.L.Houk, Electrochim. Acta 46 (2000) 323.CrossRefGoogle Scholar
  8. 8.
    A.M. Polcaro, S. Palmas, F. Renoldi and M. Mascia, Electrochim. Acta 46 (2000) 389.CrossRefGoogle Scholar
  9. 9.
    A.M. Polcaro, S. Palmas, F. Renoldi and M. Mascia, J. Appl. Electrochem. 29 (1999) 147.CrossRefGoogle Scholar
  10. 10.
    J.D. Roogers, W. Jedral and N.J. Bunce, Environ. Sci. Technol. 33 (1999) 1453.Google Scholar
  11. 11.
    B. Fleszar and J. Ploszynska, Electrochim. Acta 30 (1985) 31.CrossRefGoogle Scholar
  12. 12.
    N.B. Tahar and A. Savall, J. Electrochem. Soc. 145 (1998) 3427.Google Scholar
  13. 13.
    J.E. Vitt and D.C. Johnson, J. Electrochem. Soc. 139 (1992) 774.Google Scholar
  14. 14.
    K. Jüttner, U. Galla and H. Schmieder, Electrochim. Acta 45 (2000) 2575.CrossRefGoogle Scholar
  15. 15.
    C. Bock and B. MacDougall, J. Electroanal. Chem. 491 (2000) 48.CrossRefGoogle Scholar
  16. 16.
    L. Gherardini, P.A. Michaud and M. Panizza, Ch. Comninellis and N. Vatistas, J. Electrochem. Soc. 148 (2001) D78.CrossRefGoogle Scholar
  17. 17.
    Ch. Comninellis and C. Pulgarin, J. Appl. Electrochem. 21 (1991) 703.Google Scholar
  18. 18.
    O. Simond, V. Schaller and Ch. Comninellis, Electrochim. Acta 42 (1997) 2009.Google Scholar
  19. 19.
    G. Foti, D. Gandini. Ch. Comninellis, A. Perret and W. Haenni, Electrochem. Solid State Lett. 2 (1999) 228.Google Scholar
  20. 20.
    M.S. Ureta-Zañartu, P. Bustos, M.C. Diez, M.L. Mora and C. Gutierrez, Electrochim. Acta 46 (2001) 2545.CrossRefGoogle Scholar
  21. 21.
    F. Bonfatti, A. De Battisti, S. Ferro, G. Lodi and S. Osti, Electrochim. Acta 46 (2000) 305.CrossRefGoogle Scholar
  22. 22.
    Ch. Comninellis and A. Nerini, J. Appl. Electrochem. 25 (1995) 23.CrossRefGoogle Scholar
  23. 23.
    W.L. LaCourse, Y. Hsiao and D.C. Johnson. J. Electrochem. Soc. 136 (1989) 3714.Google Scholar
  24. 24.
    ‘The Sadtler Handbook of Ultraviolet Spectra’, Sadtler Research Laboratories (1979).Google Scholar
  25. 25.
    J.W. Robinson, 'Handbook of Spectroscopy', Vol. II (CRC Press, OH, 1974).Google Scholar
  26. 26.
    E.A. Braude, J. Chem. Soc. 45 (1945) 490.Google Scholar
  27. 27.
    I. Rodríguez, B.R. Scharifker and J. Mostany, J. Electroanal. Chem. 491 (2000) 117.CrossRefGoogle Scholar
  28. 28.
    L. Clesceri, ‘Métodos Normalizados para el Análisis de Aguas Potables y Residuales’ (Diaz de Santos, Madrid, 1989), p. 556.Google Scholar
  29. 29.
    N.D. Popovic and D.C. Johnson, Anal. Chem. 70 (1998) 468.CrossRefGoogle Scholar
  30. 30.
    Y. Hu, Y.V. Tolmachev and D.A. Scherson, J. Electroanal. Chem. 468 (1999) 64.CrossRefGoogle Scholar
  31. 31.
    I. Ilisz, Z. Laszlo and A. Dombi, Applied Catálisis A: General 180 (1999) 25.Google Scholar
  32. 32.
    A.J. Bard and L.R. Faulkner, ‘Electrochemical methods: Fundamentals and Applications’ (John Wiley & Sons, New York, 2nd edn, 2001).Google Scholar
  33. 33.
    C. Borras, T. Laredo and B.R. Scharifker, Electrochim. Acta 48 (2003) 2775.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • C. Borrás
    • 1
  • P. Rodríguez
    • 1
  • T. Laredo
    • 1
  • J. Mostany
    • 1
  • B.R. Scharifker
    • 1
  1. 1.Departamento de QuímicaUniversidad Simón BolívarCaracasA, Venezuela

Personalised recommendations