Advertisement

Journal of Applied Electrochemistry

, Volume 34, Issue 5, pp 507–516 | Cite as

Effect of Heat-Treatment on the Mechanism and Kinetics of the Hydrogen Evolution Reaction on Ni—P + TiO2 + Ti Electrodes

  • B. Łosiewicz
  • A. BudniokEmail author
  • E. Rówiński
  • E. Łągiewka
  • A. Lasia
Article

Abstract

Composite Ni—P + TiO2 + Ti layers were prepared by codeposition of Ni—P alloy with TiO2 and Ti powders from a solution containing suspension of TiO2 and Ti particles. The electrodeposition was carried out under galvanostatic conditions at room temperature. The layers exhibited an amorphous Ni—P matrix in which crystalline TiO2 and Ti were embedded. On the deposit surface, the nonstoichiometric Ti oxide, Ti10O19, and intermetallic compounds, NiTi, formed during the electrodeposition, were also present. The heat treatment of these layers in argon leads to the crystallization of Ni—P matrix and formation of nonstoichiometric Ti oxides, detected by XRD. Electrolytic activity towards the hydrogen evolution reaction (HER) was studied on these electrode materials before and after heat treatment. The mechanism of the HER was also studied, and the kinetic parameters were determined using steady-state polarization and electrochemical impedance spectroscopy (EIS). An increase in activity occurring after heating of Ni—P + TiO2 + Ti layers is related to TiO2 reduction and formation of nonstoichiometric Ti oxides: Ti10O19(400 °C), Ti7O13(500 °C) and Ti4O7(800 °C). It is postulated that the increase in electrochemical activity is related to the properties of these oxides and a facility for H reduction/adsorption on their surface, as well as to the presence of NiTi intermetallics as compared with the Ni—P + TiO2 + Ti electrode.

hydrogen evolution reaction impedance modelling nickel based electrodes titanium titanium dioxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Lasia, in B.E. Conway and R.E. White (Eds), 'Modern Aspects of Electrochemistry', Vol. 35 (Kluwer Academic/Plenum Publishers, New York, 2002), p. 1.Google Scholar
  2. 2.
    A. Lasia, in B.E. Conway, J. Bockris and R.E. White (Eds), 'Modern Aspects of Electrochemistry', Vol. 32 (Kluwer Academic/Plenum Publishers, New York, 1999), p. 143.Google Scholar
  3. 3.
    J. Panek, A. Serek, A. Budniok, E. Rówi?ski and E. ??giewka, Int. J. Hydrogen Energy 28 (2003) 169.Google Scholar
  4. 4.
    B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka and A. Lasia, Int. J. Hydrogen Energy 29 (2004) 145.Google Scholar
  5. 5.
    A. Lasia, in W. Vielstich, A. Lamm and H.A. Gasteiger (Eds), 'Handbook of Fuel Cells. Fundamentals, Technology and Applications', Vol. 2, Part 4 (John Wiley & Sons, Chichester, UK, 2003), pp. 416–440.Google Scholar
  6. 6.
    R. Rausch and H. Wendt, J. Electrochem. Soc. 9 (1996) 143.Google Scholar
  7. 7.
    A. Gruszka and A. Budniok, Adv. Perform. Mater. 6 (1999) 141.CrossRefGoogle Scholar
  8. 8.
    D. Gierlotka, E. Rówi?ski, A. Budniok and E. ??giewka, J. Appl. Electrochem. 27(1997) 1.CrossRefGoogle Scholar
  9. 9.
    B. ?osiewicz, A. St?pie?, D. Gierlotka and A. Budniok, Thin Sol. Films 349(1999) 43.Google Scholar
  10. 10.
    I. Nap?oszek-Bilnik and A. Budniok, Composites 2(2002) 63.Google Scholar
  11. 11.
    R. Karimi Shervedani and A. Lasia, J. Electrochem. Soc. 144 (1997) 511.Google Scholar
  12. 12.
    R. Karimi Shervedani and A. Lasia, J. Electrochem. Soc. 144 (1997) 8.Google Scholar
  13. 13.
    R. Karimi Shervedani and A. Lasia, J. Appl. Electrochem. 29 (1999) 979.Google Scholar
  14. 14.
    R. Karimi Shervedani and A. Lasia, J. Electrochem. Soc. 145 (1998) 2219.Google Scholar
  15. 15.
    L. Chen and A. Lasia, J. Electrochem. Soc. 140(1993) 2464.Google Scholar
  16. 16.
    C. Hitz and A. Lasia, J. Electroanal. Chem. 500(2001) 213; C. Hitz and A. Lasia, J. Electroanal. Chem. 532 (2002) 133.CrossRefGoogle Scholar
  17. 17.
    P.A. Gay, P. Berçot and J. Pagetti, Surf. Coat. Technol. 140 (2001) 147.CrossRefGoogle Scholar
  18. 18.
    S. Takeda, S. Suzuki, H. Odaka and H. Hosono, Thin Sol. Films 392 (2001) 338.Google Scholar
  19. 19.
    S. Survilienë, L. Orlovskaja, G. Bikulcius and S. Biallozor, Surf. Coat. Technol. 137 (2001) 230.CrossRefGoogle Scholar
  20. 20.
    S. Rodrigues, N. Munichandraiah and A.K. Shukla, Bull. Mater. Sci. 23 (2000) 383.Google Scholar
  21. 21.
    E.B. Castro, M.J. de Giz, E.R. Gonzalez and J.R. Vilche, Electrochim. Acta 42 (1997) 951.CrossRefGoogle Scholar
  22. 22.
    A. Takasaki, Y. Furuya, K. Ojima and Y. Taneda, J. Alloy Compd. 224(1995) 269.Google Scholar
  23. 23.
    T. Mizuno and M. Enyo, Denki Kagaku 63 (1995) 719.Google Scholar
  24. 24.
    J.R. Macdonald, J. Schoonman and A.P. Lehner, J. Electroanal. Chem. 131 (1982) 77.CrossRefGoogle Scholar
  25. 25.
    P.W. Palmberg, G.E. Riach, R.E. Weber and N.C. MacDonald, 'Handbook of Auger Electron Spectroscopy' (Physical Electronics Industries, Edina, Minessota, 1976).Google Scholar
  26. 26.
    E. Rówi?ski and E. ??giewka, Arch. Mater. Sci. 20 (1999) 241.Google Scholar
  27. 27.
    E. Rówi?ski, Surf. Sci. 411 (1998) 316.Google Scholar
  28. 28.
    J.O'M. Bockris, J. McBree and L. Nanis, J. Electrochem. Soc. 112 (1965) 1025.Google Scholar
  29. 29.
    D.A. Harrington and B.E. Conway, J. Electroanal. Chem. 221 (1987) 1.CrossRefGoogle Scholar
  30. 30.
    D.A. Harrington and B.E. Conway, Electrochim. Acta 32 (1987) 1703.CrossRefGoogle Scholar
  31. 31.
    A. Lasia and A. Rami, J. Electroanal. Chem. 294 (1990) 123.CrossRefGoogle Scholar
  32. 32.
    P. Los, A. Lasia and H. Ménard, J. Electroanal. Chem. 360 (1993) 101.CrossRefGoogle Scholar
  33. 33.
    A. Lasia, Curr. Topics Electrochem. 2 (1993) 239.Google Scholar
  34. 34.
    G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehabach and J.H. Sluyters, J. Electroanal. Chem. 176 (1984) 275.Google Scholar
  35. 35.
    R. de Levie, in P. Delahay (Ed), 'Adv. Electrochem. Electrochem. Eng.' Vol. 6 (Interscience, New York, 1967), p. 326.Google Scholar
  36. 36.
    H. Dumont, P. Los, L. Brossard, A. Lasia and H. Ménard, J. Electrochem. Soc. 139 (1992) 2143.Google Scholar
  37. 37.
    T. Pajkossy, J. Electroanal. Chem. 364 (1994) 11.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • B. Łosiewicz
    • 1
  • A. Budniok
    • 1
    Email author
  • E. Rówiński
    • 1
  • E. Łągiewka
    • 1
  • A. Lasia
    • 2
  1. 1.Institute of Materials ScienceSilesian UniversityKatowice, 12 BankowaPoland
  2. 2.Département de chimieUniversité de SherbrookeSherbrookeCanada

Personalised recommendations