Advertisement

Journal of Applied Electrochemistry

, Volume 34, Issue 5, pp 501–506 | Cite as

Electrochemical Removal of Tin from Dilute Aqueous Sulfate Solutions using a Rotating Cylinder Electrode of Expanded Metal

  • J.C. Bazan
  • J.M. BisangEmail author
Article

Abstract

The performance of a batch undivided electrochemical reactor with a rotating cylinder electrode of expanded metal sheets for the removal of tin from synthetic sulfate solution is studied. The effect of the cathode potential, initial tin concentration, number of sheets forming the cathode and cathodic side reactions on the figures of merit of the reactor is analysed. For a cathode potential of −0.65 V vs SCE at 500 rpm, the tin concentration decreased from 393 to 94 mg l−1 after 30 min of electrolysis with a specific energy consumption of 3.93 kWh kg−1 and a normalized space velocity of 1.27 h−1. The change in concentration was higher when the potential was more negative because of the turbulence-promoting action of the hydrogen evolution. The results suggest that the applied potential must represent a compromise between the increase in space time yield or normalized space velocity and the increase in the specific energy consumption.

electrochemical effluent treatment expanded metal rotating cylinder electrode tin removal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Inoue, R.S. Mirvaliev, K. Yoshizuka, K. Ohto and S. Babasaki, Solvent Extr. Res. Dev., Jpn. 8 (2001) 21.Google Scholar
  2. 2.
    D.C. Szlag and N.J. Wolf, Clean Prod. Process. 1 (1999) 117.Google Scholar
  3. 3.
    A.J. Chaudhary, S.O.V. Dando and S.M. Grimes, J. Chem. Technol. Biotechnol. 76 (2001) 47.CrossRefGoogle Scholar
  4. 4.
    F.C. Walsh, in D. Genders and N. Weinberg (Eds), 'Electrochemistry for a Cleaner Environment' (The Electrosynthesis Company, New York, 1992), pp. 101–159.Google Scholar
  5. 5.
    G. Kreysa and R. Brandner, in 'Modern Concepts in Electrochemical Reactor Design', Extended Abstracts of the 31st ISE Meeting, Venice, Italy, 2 (1980) H8.Google Scholar
  6. 6.
    A.H. Nahlé, G.W. Reade and F.C. Walsh, J. Appl. Electrochem. 25 (1995) 450.CrossRefGoogle Scholar
  7. 7.
    E. Merck (Ed.), 'Métodos complexométricos de valoración con titriplex' (Complexometric methods of titration with titriplex), 3rd edn, (A.G. Merck, Darmstadt), p. 34 (in Spanish).Google Scholar
  8. 8.
    C.N. Reilley and A.J. Barnard Jr, in L. Meites (Ed.), 'Handbook of Analytical Chemistry' (McGraw-Hill, New York, 1963), pp. 3–188.Google Scholar
  9. 9.
    E.W. Abel, in J.C. Bailar Jr, H.J. Emeléus, R. Nyholm and A.F. Trotman-Dickenson (Eds), 'Comprehensive Inorganic Chemistry' Vol. 2 (Pergamon, Oxford, 1973), pp. 43–104.Google Scholar
  10. 10.
    J.M. Grau and J.M. Bisang, J. Chem. Technol. Biotechnol. 78 (2003) 1032.CrossRefGoogle Scholar
  11. 11.
    G. Kreysa, DECHEMA Monographs 94 (1983) 123 (in German).Google Scholar
  12. 12.
    G. Kreysa, Chem.-Ing.-Tech. 55 (1983) 23 (in German).Google Scholar
  13. 13.
    D.R. Gabe and F.C. Walsh, J. Appl. Electrochem. 14 (1984) 565.Google Scholar
  14. 14.
    D. Robinson and F.C. Walsh, Hydrometallurgy 26 (1991) 115.Google Scholar
  15. 15.
    M. Eisenberg, C.W. Tobias and C.R. Wilke, J. Electrochem. Soc. 101 (1954) 306.Google Scholar
  16. 16.
    F.S. Holland, Chem. and Ind. (London). July (1978) 453.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Facultad de Ingeniería Química (UNL)Programa de Electroquímica Aplicada e Ingeniería Electroquímica (PRELINE)Santa FeArgentina

Personalised recommendations