Journal of Applied Electrochemistry

, Volume 34, Issue 5, pp 545–550 | Cite as

Protective Properties of An Inhibitor Layer Formed on Copper in Neutral Chloride Solution

  • H. Otmačić
  • J. Telegdi
  • K. Papp
  • E. Stupnišek-LisacEmail author


The aim of this work was to investigate the efficiency of 1-phenyl-4-methylimidazole for corrosion inhibition of copper in 3% NaCl solution. The formation of a thick layer on the copper surface was observed in the presence of this compound. The protective properties of this layer were characterized by means of cyclic voltammetry and through AFM and SEM/EDX measurements. Voltammetric measurements were performed in stirred and quiescent solutions as well as at different immersion times. Voltammetric measurements showed that the protective properties of the layer were enhanced by stirring and with an increase in immersion time. The time dependence of the protective layer formation was characterized by AFM measurements. From SEM/EDX measurements it was concluded that this protective layer has a complex structure consisting of the inhibitor and corrosion products.

AFM copper corrosion corrosion inhibitor cyclic voltammetry imidazole SEM/EDX 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y.I. Kuznetsov, 'Organic Inhibitors for Corrosion of Metals' (Plenum, New York, 1996).Google Scholar
  2. 2.
    M. Fleischmann, I.R. Hill, G. Mengoli, M.M. Musiani and J. Akhavan, Electrochim. Acta 30 (1985) 879.Google Scholar
  3. 3.
    A. Dafali, B. Hammouti, A. Aouniti, R. Mokhlisse, S. Kertit and K. Elkacem, Ann. Chim. Sci. Mat. 25 (2000) 437.Google Scholar
  4. 4.
    G. Xue, J. Ding, P. Wu and G. Ji, J. Electroanal. Chem. 270 (1989) 163.CrossRefGoogle Scholar
  5. 5.
    W.J. Lee, Mater. Sci. Eng. A 348 (2003) 217.Google Scholar
  6. 6.
    C. McCrory-Joy and J.M. Rosamilia, J. Electroanal. Chem. 136 (1982) 105.CrossRefGoogle Scholar
  7. 7.
    B. Trachili, M. Keddam, H. Takenouti and A. Srhiri, Prog. Org. Coat. 44 (2002) 17.Google Scholar
  8. 8.
    E. Stupnišek-Lisac, V. Cinotti and D. Reichenbach, J. Appl. Electrochem. 29 (1999)117.Google Scholar
  9. 9.
    E. Stupnišek-Lisac, A. Gazivoda and M. Madžarac, Electrochim. Acta 47 (2002) 4189.Google Scholar
  10. 10.
    R. Gašparac, C.R. Martin and E. Stupnišek-Lisac, J. Electrochem. Soc. 147 (2000) 548.Google Scholar
  11. 11.
    H. Otma?i? and E. Stupnišek-Lisac, Electrochim. Acta 48 (2003) 985.Google Scholar
  12. 12.
    J. Crousier, L. Paradessus and J.P. Crousier, Electrochim. Acta 33 (1988) 1039.CrossRefGoogle Scholar
  13. 13.
    C. Deslouis, B. Tribollet, G. Mengoli and M.M. Musiani, J. Appl. Electrochem. 18 (1988) 374.Google Scholar
  14. 14.
    C. Deslouis, B. Tribollet, G. Mengoli and M.M. Musiani, J. Appl. Electrochem. 18 (1988) 384.Google Scholar
  15. 15.
    H.P. Lee and K. Nobe, J. Electrochem. Soc. 133 (1986) 2035.Google Scholar
  16. 16.
    D. Tromans and R. Sun, J. Electrochem. Soc. 138 (1991) 3235.Google Scholar
  17. 17.
    D. Tromans and J.C. Silva, Corrosion 53 (1997) 16.Google Scholar
  18. 18.
    B. Millet, C. Fiaud, C. Hinnen and E.M.M. Sutter, Corros. Sci. 37 (1995) 1903.Google Scholar
  19. 19.
    A. Shaban, E. Kálmán, J. Telegdi and G. Pálinkás, Gy. Dóra, Appl. Phys. A 66 (1998) S545.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • H. Otmačić
    • 1
  • J. Telegdi
    • 2
  • K. Papp
    • 2
  • E. Stupnišek-Lisac
    • 1
    Email author
  1. 1.Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia
  2. 2.Chemical Research CenterInstitute of ChemistryBudapestHungary

Personalised recommendations