Advertisement

Journal of Applied Electrochemistry

, Volume 34, Issue 5, pp 533–543 | Cite as

Effects of Thiourea on Anodic Dissolution of Au and Surface Oxidation Behaviour in aq HClO4 Studied by Means of an EQCN

  • M. Tian
  • B.E. Conway
Article

Abstract

Anodic dissolution of Au is facilitated by the presence of thiourea owing to formation of strongly complexed Au ions. The present paper reports studies of this process using cyclic voltammetry (CV), chronopotentiometry and chronoamperometry, usefully complemented by nanogravimetry employing an electrochemical quartz-crystal nanobalance (EQCN). The molar masses per faraday for Au dissolution were determined from EQCN measurements, coupled with information derived from CV, chronopotentiometry and chronoamperometry, and clearly indicate that Au becomes dissolved over the potential range 0.45—0.65 V vs RHE via a 1e oxidation process in 0.5 M HClO4 solution containing thiourea. The peak potential for Au dissolution in the presence of thiourea is about 600 mV less positive than that in the presence of Br or Cl (1.20 V vs RHE for Br and 1.39 V vs RHE for Cl). The linear relationship between anodic peak currents at about 0.630 V vs RHE and square-root of the sweep rate indicates that the Au dissolution process is diffusion-controlled. The anodic current efficiency for Au dissolution is 93%.

Au electrode dissolution electrochemical nanobalance perchloric acid rotating-disc electrode thiourea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Ke, J.J. Hoekstra, B.C. Sison and D. Trivich, J. Electrochem. Soc. 106 (1959) 382.Google Scholar
  2. 2.
    Ph. Javet and H.E. Hintermann, Electrochim. Acta 14 (1969) 527.CrossRefGoogle Scholar
  3. 3.
    E. Dutkiewicz and R. Parsons, J. Electroanal. Chem. 11 (1965) 197.Google Scholar
  4. 4.
    F.A. Blomgren and J. O'M Bockris, Nature, London 186 (1960) 305.Google Scholar
  5. 5.
    H. Wroblowa and M. Green, Electrochim. Acta 8 (1963) 679.CrossRefGoogle Scholar
  6. 6.
    M. Alodan and W. Smyrl, Electrochim. Acta 44 (1998) 299.CrossRefGoogle Scholar
  7. 7.
    B. Reents, W. Plieth, V.A. Macagno and G.I. Lacconi, J. Electroanal. Chem. 453 (1998) 121.CrossRefGoogle Scholar
  8. 8.
    G. Brown, G. Hope, D. Schweinsberg and P. Fredericks, J. Electroanal. Chem. 380 (1995) 161.CrossRefGoogle Scholar
  9. 9.
    M. Fleischmann, I. Hill and G. Sundholm, J. Electroanal. Chem. 157 (1983) 359.CrossRefGoogle Scholar
  10. 10.
    M. Tian, W.G. Pell and B.E. Conway, J. Electroanal. Chem. 552 (2003) 279.CrossRefGoogle Scholar
  11. 11.
    S.H. Cadle and S. Bruckenstein, J. Electroanal. Chem. 48 (1973) 325.CrossRefGoogle Scholar
  12. 12.
    S.G.D. Shackleford, C. Boxall, S.N. Port and R.J. Taylor, J. Electroanal. Chem. 538 (2002) 109.CrossRefGoogle Scholar
  13. 13.
    R.P. Frankenthal and D.E. Thompson, J. Electrochem. Soc. 129 (1982) 1192.Google Scholar
  14. 14.
    S. Ye, C. Ishibashi, K. Shimazu and K. Uosaki, J. Electrochem. Soc. 145 (1998) 1614.Google Scholar
  15. 15.
    Lobry de Bruyn, Recl. Trav. Chim. Pays Bas 40 (1921) 53.Google Scholar
  16. 16.
    T. Groenewald, J. Appl. Electrochem. 5 (1975) 71.CrossRefGoogle Scholar
  17. 17.
    H.G. Zhang, I.M. Ritchie and S.R.L. Brooy, J. Electrochem. Soc. 148 (2001) 146.Google Scholar
  18. 18.
    M. Okido, M. Ishikawa and L.Y. Chai, Trans. Nonferrous Met. Soc. China 12 (2002) 519.Google Scholar
  19. 19.
    V.P. Kazakov, A.I. Lapsjin, and B.I. Pescheviski, Russ. J. Inorg. Chem. 9 (1964) 708.Google Scholar
  20. 20.
    P.W. Preisler and L. Berger, J. Am. Chem. Soc. 69 (1947) 322.Google Scholar
  21. 21.
    S.J. Reddy and V.R. Krishnan, J. Electroanal. Chem. 27 (1970) 473.Google Scholar
  22. 22.
    S. Bruckenstein, A. Fensore, Z. Li and A.R. Hillman, J. Electroanal. Chem. 370 (1994) 189.CrossRefGoogle Scholar
  23. 23.
    Y. Mo, Y. Gofer, E. Hwang, Z. Wang and D.A. Scherson, J. Electroanal. Chem. 409 (1996) 87.CrossRefGoogle Scholar
  24. 24.
    A. Zolfaghari, B.E. Conway and G. Jerkiewicz, Electrochim. Acta 47 (2002) 1173.CrossRefGoogle Scholar
  25. 25.
    Q. Chi, T. Tatsuma, M. Ozaki, T. Sotomura and N. Oyama, J. Electrochem. Soc. 145 (1998) 2369.Google Scholar
  26. 26.
    H. Gomez, R. Henriquez, R. Schrebler, G. Riveros and R. Cordova, Electrochim. Acta 46 (2001) 4309.Google Scholar
  27. 27.
    G. Sauerbrey, Z. Phys. 155 (1959) 206.Google Scholar
  28. 28.
    O. Melroy, K. Kanazawa, J.B. Gordon and D.A. Buttry, Langmuir 2 (1986) 697.CrossRefGoogle Scholar
  29. 29.
    G. Vatankhah, J. Lessard, G. Jekiewicz, A. Zolfaghari and B.E. Conway, Electrochim. Acta 48 (2003) 1613.CrossRefGoogle Scholar
  30. 30.
    V. Tsionsky, L. Daikhin and E. Gileadi, J. Electrochem. Soc. 143 (1996) 2240.Google Scholar
  31. 31.
    M. Hepel, in A. Wieckowski (Ed.), 'Interfacial Electrochemistry: Theory, Experiment and Application' (Marcel Dekker, New York, 1999), Chapter 34, p. 599.Google Scholar
  32. 32.
    H.A. Kozlowska, in J.O'M. Bockris, E. Yeager, B.E. Conway (Eds), 'Comprehensive Treatise of Electrochemistry', Vol. 9 (Plenum Press, New York, 1984), Chapter 2.Google Scholar
  33. 33.
    R.K. Burshtein, M.R. Tarasevich and V.S. Vulinskaya, Electrokhimiya 3 (1967) 349.Google Scholar
  34. 34.
    R. Woods, in A.J. Bard (Ed.), 'Electroanalytical Chemistry', Vol. 9 (Marcel Dekker, New York, 1976), pp. 1-162.Google Scholar
  35. 35.
    D.A. Buttry, in A.J. Bard (Ed.), 'Electroanalytical Chemistry', Vol. 17 (Marcel Dekker, New York, 1991).Google Scholar
  36. 36.
    G. Jekiewicz, G. Vatankhah, A. Zolfaghari and J. Lessard, Electrochem. Comm. 1 (1999) 416.Google Scholar
  37. 37.
    J.S. Gordon and D.C. Johnson, J. Electroanal. Chem. 365 (1994) 275.CrossRefGoogle Scholar
  38. 38.
    S. Bruckenstein and M. Shay, J. Electroanal. Chem. 188 (1985) 131.Google Scholar
  39. 39.
    A.E. Bolzan, I.B. Wakenge, R.C. Salvarezza and A.J. Arvia, J. Electroanal. Chem. 475 (1999) 181.Google Scholar
  40. 40.
    M. Tian, W.G. Pell and B.E. Conway, Electrochim. Acta 48 (2003) 2675.CrossRefGoogle Scholar
  41. 41.
    R. Schumacher, G. Borges and K.K. Kanazawa, Surf. Sci. 163 (1985) 1621.CrossRefGoogle Scholar
  42. 42.
    A.N. Correia, M.C. dos Santos, S.A.S. Machado and L.A. Avaca, J. Electroanal. Chem. 547 (2003) 53.CrossRefGoogle Scholar
  43. 43.
    M.J. Henderson, E. Bitziou, A.R. Hillman and E. Viel, J. Electrochem. Soc. 148 (2001) E105.CrossRefGoogle Scholar
  44. 44.
    G.S. Ostrom and D.A. Buttry, J. Electroanal. Chem. 256 (1988) 411.CrossRefGoogle Scholar
  45. 45.
    H. Angerstein-Kozlowska, B.E. Conway and W.B.A. Sharp, J. Electroanal. Chem. 43 (1973) 9.CrossRefGoogle Scholar
  46. 46.
    F.G. Cottrell, Z. Phys. Chem. 42 (1902) 85.Google Scholar
  47. 47.
    U. Mishra, S. Tripathi and K. Yadava, J. Electrochem. Soc. India 38 (1987) 147.Google Scholar
  48. 48.
    J. Kirchnerova and W.C. Purdy, Anal. Chim. Acta 123 (1981) 83.Google Scholar
  49. 49.
    Southampton Electrochemistry Group, 'Instrumental Methods in Electrochemistry', (Ellis Horwood, Chichestes, UK, 1985), Chapter 4 (Figures 4.13 and 4.14).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. Tian
    • 1
  • B.E. Conway
    • 1
  1. 1.Chemistry DepartmentUniversity of OttawaOttawaCanada

Personalised recommendations