Skip to main content
Log in

Synergistic effects of novel battery manufacturing processes for lead/acid batteries: Part II: Mechanistic studies

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The mechanistic aspects of the beneficial effects of different manufacturing processes on the performance of lead/acid batteries have been studied using electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The implications of grid etching, active material compression and spiking of active material with conductive additives, along with various combinations of these processes, on the PAM and positive electrode corrosion layer have shown that a combination of compression and conductive additives reduces the PbSO4 content of both the positive active material (PAM) and the grid corrosion layer, leading to an enhancement in battery performance. Furthermore, the impact of the most promising battery manufacturing process on the kinetics of electrochemical processes occurring in the LAB, as studied using EIS, has shown that the charge transfer resistance of control cells in the fully discharged state increases with cycling, while the treated cells behaved like a near-perfect capacitor, yielding a negligible charge transfer resistance. EIS has shown that the kinetics of lead/acid battery processes in additive spiked and compressed cells is accelerated with respect to control cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rochliadi and R. De Marco, J. Appl. Electrochem. 32 (2002) 1039.

    Article  CAS  Google Scholar 

  2. R. De Marco, A. Rochliadi and J. Jones, J. Appl. Electrochem. 31 (2001) 953.

    Article  CAS  Google Scholar 

  3. R. De Marco and J. Jones, J. Appl. Electrochem. 30 (2000) 77.

    CAS  Google Scholar 

  4. Q. Dengke, J. Power Sources 78 (1999) 88.

    CAS  Google Scholar 

  5. E. Meissner, J. Power Sources 78 (1999) 99.

    CAS  Google Scholar 

  6. B. Culpin, A.F. Hollenkamp and D.J. Rand, J. Power Sources 38 (1992) 63.

    CAS  Google Scholar 

  7. N.E. Bagshaw, J. Power Sources 67 (1997) 105.

    CAS  Google Scholar 

  8. I. Petersson and E. Ahlberg, J. Power Sources 91 (2000) 143.

    CAS  Google Scholar 

  9. S. Zhong, H-K. Liu, S-X. Dou and M. Skyllas-Kazacos, J. Power Sources 59 (1996) 123.

    CAS  Google Scholar 

  10. S. Fouache, A. Chabrol, G. Fossati, M. Bassini, M.J. Saiz and L. Atkins, J. Power Sources 78 (1999) 12.

    CAS  Google Scholar 

  11. J.L. Caillerie and L. Albert, J. Power Sources 67 (1997) 279.

    CAS  Google Scholar 

  12. M.K. Dimitrov and D. Pavlov, J. Power Sources 93 (2001) 234.

    CAS  Google Scholar 

  13. E. Rocca and J. Steinmetz, Electrochim. Acta 44 (1999) 4611.

    Article  CAS  Google Scholar 

  14. N. Cui and J.L. Luo, Electrochim. Acta 45 (2000) 3973.

    Article  CAS  Google Scholar 

  15. R. De Marco and J. Liesegang, Appl. Surf. Sci. 84 (1995) 237.

    Article  CAS  Google Scholar 

  16. R.J. Hill, A.M. Foxworthy and R.J. White, J. Power Sources 32 (1990) 315.

    CAS  Google Scholar 

  17. I. Petersson and E. Ahlberg, J. Power Sources 91 (2000) 137.

    CAS  Google Scholar 

  18. J. Apâteanu, A.F. Hollenkamp and M.J. Koop, J. Power Sources 46 (1993) 239.

    Google Scholar 

  19. C-W. Chao, Y-Y. Wang, C-C. Wan and J.T. Yang, J. Power Sources 55 (1995) 243.

    CAS  Google Scholar 

  20. R.H. Newnham and W.G.A. Baldsing, J. Power Sources 66 (1997) 27.

    CAS  Google Scholar 

  21. K.K. Constanti, A.F. Hollenkamp, M.J. Koop and K. McGregor, J. Power Sources 55 (1995) 269.

    CAS  Google Scholar 

  22. H. Dietz, H.K. Niepraschk and K. Wiesener, J. Power Sources 46 (1993) 191.

    CAS  Google Scholar 

  23. V.E. Dmitrenko, B.Z. Lubenstov, S.G. Yevdokimenko, I.I. Lisyansky and V.A. Soldatenko, J. Power Sources 67 (1997) 111.

    CAS  Google Scholar 

  24. A.G. Gad Allah, H.A.A. El-Rahman and M.A. El-Galil, J. Appl. Electrochem. 25 (1995) 682.

    Article  CAS  Google Scholar 

  25. T. Torcheux, J.P. Vaurijoux and A. de Guibert, J. Power Sources 64 (1997) 81.

    CAS  Google Scholar 

  26. R. Wagner, J. Power Sources 53 (1995) 153.

    CAS  Google Scholar 

  27. Y. Yamaguchi, M. Shiota, Y. Nakayama, N. Hirai and S. Hara, J. Power Sources 85 (2000) 22.

    CAS  Google Scholar 

  28. S. Cheng, J. Zhang, M. Zhao and C. Cao, J. Alloys and Compds 293-295 (1999) 814.

    Google Scholar 

  29. J.P. Diard, B.L. Gorrec and C. Montella, J. Power Sources 70 (1998) 78.

    CAS  Google Scholar 

  30. J.P. Diard, B. Le Gorrec, C. Montella and P. Landaud, Electrochim. Acta 42 (1997) 3417.

    CAS  Google Scholar 

  31. D. Pavlov and G. Petkova, J. Electrochem. Soc. 149 (2002) A654.

    CAS  Google Scholar 

  32. P.R. Roberge, E. Halliop, G. Verville and J. Smit, J. Power Sources 32 (1990) 261.

    CAS  Google Scholar 

  33. S.A.G.R. Karunathilaka, R. Barton, M. Hughes and N.A. Hampson, J. Appl. Electrochem. 15 (1985) 251.

    Article  CAS  Google Scholar 

  34. B.A. Boukamp, 'Equivalent Circuit (Equivcrt.pas) User Manual' (University of Twente, Enschede, The Netherlands, 1989), report CT88/265/128-CT89/214/128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. De Marco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rochliadi, A., De Marco, R. & Lowe, A. Synergistic effects of novel battery manufacturing processes for lead/acid batteries: Part II: Mechanistic studies. Journal of Applied Electrochemistry 34, 263–270 (2004). https://doi.org/10.1023/B:JACH.0000015620.79437.5d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000015620.79437.5d

Navigation