Skip to main content
Log in

Current distribution measurements in a PEFC with net flow geometry

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A measurement system for current distribution mapping for a PEFC has been developed. The segmented anode is constructed so as to have high thermal conductivity in order to prevent the formation of large temperature gradients between the electrodes. The construction is therefore feasible for use at high current densities. Both segmented and unsegmented gas diffusion layers are used. The effect of inlet humidification and gas composition at the cathode side is studied. In addition, two different flow geometries are studied. The results show that the measurement system is able to distinguish between current distribution originating from differences in proton conductivity, species concentration and gas diffusion layer properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arthur D. Little Inc., 'Cost analysis of fuel cell system for transportation: Baseline system cost estimate', US Department of Energy, Report SFAA, no. DE-SCO2-98EE50526 (2001).

  2. D. Oei, J. A. Adams, A.A. Kinnelly, G.H. Purnell, R.I. Sims, M.S. Sulek, D.A. Wernette, B. James, F. Lomax, G. Baum, S. Thomas and I. Kuhn, 'Direct hydrogen fueled proton exchange membrane fuel cell system for transportation applications', Final Technical Report Report DOE/CE/50389-505, Ford Motor Company (2000).

  3. R.K.A.M. Mallant, J. Power Sources 118 (2003) 424.

    CAS  Google Scholar 

  4. J.S. Yi and T.V. Nguyen, J. Electrochem. Soc. 146 (1999) 38.

    CAS  Google Scholar 

  5. N. Djilali and D. Lu, Int. J. Therm. Sci. 41 (2002) 29.

    Article  CAS  Google Scholar 

  6. G.J.M. Janssen, J. Electrochem. Soc. 148 (2001) A1313.

    Article  CAS  Google Scholar 

  7. D.J.L. Brett, S. Atkins, N.P. Brandon, V. Vesovic, N. Vasileiadis and A.R. Kucernak, Electrochem. Commun. 3 (2001) 628.

    Article  CAS  Google Scholar 

  8. S.J.C. Cleghorn, C.R. Derouin, M.S. Wilson and S. Gottesfeld, J. Appl. Electrochem. 28 (1998) 663.

    Article  CAS  Google Scholar 

  9. M.M. Mench, C.Y. Wang and M. Ishikawa, J. Electrochem. Soc. 150 (2003) A1052.

    CAS  Google Scholar 

  10. M. Noponen, T. Mennola, M. Mikkola, T. Hottinen and P. Lund, J. Power Sources 106 (2002) 304.

    CAS  Google Scholar 

  11. N. Rajalakshmi, M. Raja and K.S. Dhathathreyan, J. Power Sources 112 (2002) 331.

    CAS  Google Scholar 

  12. J. Stumper, S.A. Campbell, D.P. Wilkinson, M.C. Johnson and M. Davis, Electrochim. Acta 43 (1998) 3773.

    Article  CAS  Google Scholar 

  13. Ch. Wieser, A. Helmbold and E. Gülzow, J. Appl. Electrochem. 30 (2000) 803.

    Article  CAS  Google Scholar 

  14. Y-G. Yoon, W-Y. Lee, T-H. Yang, G-G. Park and C-S. Kim, J. Power Sources 118 (2003) 193.

    CAS  Google Scholar 

  15. J.M. Bisang, J. Appl. Electrochem. 21 (1991) 760.

    Article  CAS  Google Scholar 

  16. C.J. Brown, D. Pletcher, F.C. Walsh, J.K. Hammond and D. Robinson, J. Appl. Electrochem. 22 (1992) 613.

    Article  CAS  Google Scholar 

  17. P. Byrne, 'Mathematical modelling and experimental simulation of chlorate and chlor-alkali cells', Dissertation, Royal Institute of Technology, Stockholm, Sweden (2001).

    Google Scholar 

  18. M. Chikhi, M. Rakib, Ph. Viers, S. Laborie, A. Hita and G. Durand, Desalination 149 (2002) 375.

    Article  CAS  Google Scholar 

  19. L.R. Czarnetzki and L.J.J. Janssen, J. Appl. Electrochem. 19 (1989) 630.

    Article  CAS  Google Scholar 

  20. L.J.J. Janssen and G.J. Visser, J. Appl. Electrochem. 21 (1991) 753.

    CAS  Google Scholar 

  21. L.J.J. Janssen and G.J. Visser, J. Appl. Electrochem. 21 (1991) 386.

    CAS  Google Scholar 

  22. K. Onda, T. Murakami, T. Hikosaka, M. Kobayashi, R. Notu and K. Ito, J. Electrochem. Soc. 149 (2002) A1069.

    Article  CAS  Google Scholar 

  23. J. Qi and R.F. Savinell, J. Appl. Electrochem. 20 (1990) 885.

    Article  CAS  Google Scholar 

  24. H. Riegel, J. Mitrovic and K. Stephan, J. Appl. Electrochem. 28 (1998) 10.

    CAS  Google Scholar 

  25. K. Scott, W. Taama and B.R. Williams, J. Appl. Electrochem. 28 (1998) 259.

    CAS  Google Scholar 

  26. E. Gülzow, T. Kaz, R. Reissner, H. Sander, L. Schilling and M. Bradke, J. Power Sources 105 (2002) 261.

    Google Scholar 

  27. R. Liu and E. S. Smotkin, J. Electroanal. Chem. 535 (2002) 49.

    Article  CAS  Google Scholar 

  28. M.M. Mench and C.Y. Wang, J. Electrochem. Soc. 150 (2003) A79.

    CAS  Google Scholar 

  29. N. Wagner, T. Knöri, E. Gülzov and C.A. Schiller, Abstracts of 53rd Annual Meeting of International Society of Electrochemistry, Dusseldorf, Germany 15–20 Sept. (2002), p. 298.

  30. M-M. Mench, Q-L. Dong and C-Y. Wang, J. Power Sources 124 (2003) 90.

    CAS  Google Scholar 

  31. D.J.L. Brett, S. Atkins, N.P. Brandon, V. Vesovic, N. Vasileiadis and A. Kucernak, Electrochem. Solid-State Lett. 6 (2003) A63.

    Article  CAS  Google Scholar 

  32. F.N. Büchi and G.G. Scherer, PSI Scientific Report V (1998), p. 57.

  33. J-N. Han, G-G. Park, Y-G. Yoon, T-H. Yang, W-Y. Lee and C-S. Kim, Int. J. Hydrogen Energy 28 (2003) 609.

    CAS  Google Scholar 

  34. P.J.S. Vie, 'Characterisation and optimisation of the polymer electrolyte fuel cell', Dissertation, NTNU, Trondheim, Norway (2002).

    Google Scholar 

  35. M. Watanabe, H. Igarashi, H. Uchida and F. Hirasawa, J. Electroanal. Chem. 399 (1995) 239.

    Article  CAS  Google Scholar 

  36. R.J. Bellows, M.Y. Lin, M. Arif, A.K. Thompson and D. Jacobson, J. Electrochem. Soc. 146 (1999) 1099.

    Article  CAS  Google Scholar 

  37. A.B. Geiger, A. Tsukada, E. Lehmann, P. Vontobel, A. Wokaun and G.G. Scherer, Fuel Cells 2 (2002) 92.

    Article  CAS  Google Scholar 

  38. A. Tsukada, E. Lehmann, P. Vontobel and G.G. Scherer, PSI Scientific Report V (1999) p. 84.

  39. J. Ihonen, J. Xu, S. Schwartz, A. Lundblad, G. Lindbergh and C. Kaijser, 'PEFC stack based on stainless steel net flow fields' to be submitted to J. Power Sources.

  40. P. Gode, F. Jaouen, G. Lindbergh, A. Lundblad and G. Sundholm, 'Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode' Electrochim. Acta, in press.

  41. J. Ihonen, M. Mikkola and G. Lindbergh, 'The flooding of gas diffusion backing in polymer electrolyte fuel cells; Physical and electrochemical characterization', to be submitted to J. Electrochem. Soc.

  42. F. Richter, C-A. Schiller and N. Wagner, 'Current interrupt technique-Measuring low impedances at high frequencies' in Electrochem. Applications 1 (2002), Editor: Hans-Joachim Schäfer, Zahner-elektrik GmbH & Co. KG, Kronach.

  43. M. Noponen, T. Hottinen, T. Mennola, M. Mikkola and P. Lund, J. Appl. Electrochem. 32 (2002) 1081.

    Article  CAS  Google Scholar 

  44. D. Tamm, 'Influence of anode gas composition on polymer electrolyte fuel cell (PEFC) performance', MSc thesis, Royal Institute of Technology, Stockholm, Sweden (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lindbergh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noponen, M., Ihonen, J., Lundblad, A. et al. Current distribution measurements in a PEFC with net flow geometry. Journal of Applied Electrochemistry 34, 255–262 (2004). https://doi.org/10.1023/B:JACH.0000015616.92074.5d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000015616.92074.5d

Navigation