Skip to main content
Log in

Electrodeposition, composition and structure of Zn—Cr alloys

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of polyethylene glycol (PEG 1500) as additive and of deposition conditions on Zn—Cr alloy electrodeposition from an acidic sulfate electrolyte at room temperature, without agitation was investigated. PEG polarizes the overall cathodic reaction and inhibits Zn deposition. Cr codeposition with Zn starts at a cathodic potential of about −1,95 V vs Hg/Hg2SO4, which is reached at current density of about 20 A dm−2 in galvanostatic conditions. Zn—Cr alloy coatings containing up to 28 at % Cr were obtained depending on the plating conditions. SEM observations showed an island-like structure, formed by the local growth of crystals, which covered the surface during further deposition. In the first stages of electrodeposition the powder diffraction spectra contain lines of b.c.c. Γ-(Zn,Cr) phase (a Γ ≈ 3.02 Å). After 30 s deposition time weak lines of Zn-based η phase (a η ≈ 2.67 Å, c η ≈ 4.90 Å) appear, and become clearly visible in coatings deposited for 90 s. The average Cr content in the alloy coatings decreases with advancing deposition. The as-plated surface contains C in organic compounds and Zn(OH)2. After 50 min sputtering, Zn and a mixture of Cr, Cr2O3 and Cr7C3 were found. The presence of organic C and O, probably from inclusions of PEG, were also detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Siegert and J. O'Grady, Metalloberfläche 47 (1993) 378.

    CAS  Google Scholar 

  2. V. Leroy, Galvatech '95, 'The Use and Manufacture of Zinc and Zinc Alloy-coated Sheet Steel Products into the 21st Century, Conference Proceedings, Chicago, IL, 17–21 Sept. (1995), p. 279.

  3. Y. Miyoshi, H. Odashima, Y. Shindo, M. Yoshida and T. Kamanaru, Nippon Steel Technical Report No. 57, 16–21 Apr. (1993) p. 16.

  4. T. Ichida, Galvatech '95, op. cit. [2], p. 359.

  5. US Patent 4 877 494, EP 0 285 931 A1, US Patent 4 897 317.

  6. US Patent 5 273 643.

  7. US Patent 5 510 196, EP 0 607 452 A1.

  8. EP 0 638 668 A1.

  9. EP 0 643 157 A1.

  10. US Patent 5 616 232.

  11. A. Takahashi, Y. Miyoshi and T. Hada, J. Electrochem. Soc. 141 (1994) 954.

    CAS  Google Scholar 

  12. Russian Patent 328 208.

  13. A. Watson, Y.J. Su, M.R. El-Sharif and C.U. Chisholm, Trans. Inst. Met. Finish. 71(1) (1993) 15.

    CAS  Google Scholar 

  14. N.B. Berezin, N.V. Gudin, V.V. Chevela and A.G. Filippova, Zashtita metallov 28(6) (1992) 961.

    CAS  Google Scholar 

  15. N.B. Berezin, N.V. Gudin, A.G. Filippova, E.A. Matulenis and Yu. V. Borisov, Zashtita metallov 29(1) (1993) 99.

    CAS  Google Scholar 

  16. T. Ohgai, J.S. Ki, T. Akiyama and H. Fukushima, The Minerals, Metals & Materials Society (1998) 225.

  17. T. Akiyama, S. Kobayashi, J. Ki, T. Ohgai and H. Fukushima, J. Appl. Electrochem. 30 (2000) 817.

    Article  CAS  Google Scholar 

  18. M. Hansen and Ê. Anderko, 'Constitution of Binary Alloys', Metallurgizdat, Moscow (1962) p. 605.

    Google Scholar 

  19. M.R. El-Sharif, C.U. Chisholm, Y.J. Sut and L. Feng, 'Advances in Surface Engineering', Vol. 1 (Royal Society of Chemistry, 1997), p. 95.

  20. M. Miyake, T. Hirato, E. Matsubara and Y. Awakura, Second International Conference on 'Processing Materials for Properties', San Francisco, CA, 5–8 Nov. (2000), p. 779.

  21. L. Guzman, M. Adami, W. Gissler, S. Klose and S. De Rossi, Surf. Coat. Technol. 125 (2000) 218.

    Article  CAS  Google Scholar 

  22. I.C. Noyan, T.C. Huang and B.R. York, Critical Reviews in Solid State and Mater. Sci. 20(2) (1995) 125.

    CAS  Google Scholar 

  23. J.N. Howarth and D. Pletcher, J. Appl. Electrochem. 18 (1988) 644.

    Article  CAS  Google Scholar 

  24. T. Pearson and E. Long, Trans. Inst. Metal Finish. 76(6) (1998) B83.

    CAS  Google Scholar 

  25. I. Drela, J. Szynkarczyk and J. Kunicki, J. Appl. Electrochem. 19 (1989) 933.

    Article  CAS  Google Scholar 

  26. A.M. Smith, A. Watson and D.H. Vaughan, Trans. Inst. Metal Finish. 71(3) (1993) 106.

    CAS  Google Scholar 

  27. Zh. Tu, Zh. Yang, J. Zhang, M-Zh. An and W-L. Li, Plat. Surf. Finish. Nov. (1993) 79.

  28. S. Hoshino and G.B. Hoflund, JES 133(4) (1986) 681.

    CAS  Google Scholar 

  29. G.B. Hoflund, D.A. Asbury, S.J. Babb, A.L. Grogan, Jr., H.A. Laitinen and S. Hoshino, J. Vac. Sci. Technol. A 4(1) (1986) 26.

    Article  CAS  Google Scholar 

  30. E.N. Lubnin, A.A. Edigaryan and Yu. M. Polukarov, Protection of Metals 36(4) (2000) 301.

    CAS  Google Scholar 

  31. V.A. Safonov, L.N. Vykhodtseva, A.A. Edigaryan, A.D. Aliev, E.B. Molodkina, A.I. Danilov, E.N. Lubnin and Yu. M. Polukarov, Russ. J. Electrochem. 37(2) (2001) 127.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Monev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boiadjieva, T., Kovacheva, D., Petrov, K. et al. Electrodeposition, composition and structure of Zn—Cr alloys. Journal of Applied Electrochemistry 34, 315–321 (2004). https://doi.org/10.1023/B:JACH.0000015609.43585.ef

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000015609.43585.ef

Navigation