Journal of Applied Electrochemistry

, Volume 34, Issue 2, pp 225–233 | Cite as

Voltammetric and Raman microspectroscopic studies on artificial copper pits grown in simulated potable water

  • A.G. Christy
  • A. Lowe
  • V. Otieno-Alego
  • M. Stoll
  • R.D. Webster

Abstract

Artificial copper pits were prepared by electrochemically oxidising 60–80 μm diameter copper wires embedded in an epoxy resin over periods of 12–14 h. The electrolyte matrix consisted of various combinations of approximately 40 ppm unbuffered solutions (pH = 6–8) of sodium salts of Cl, HCO3 and SO42− that are similar in concentration to what are found in potable water supplies in many metropolitan areas throughout the world. It was found that in the concentrations used for the study, HCO3 and to a lesser degree Cl had a positive affect on preventing pit growth under potentiostatic control, with both anions causing passivation of the copper metal. On the other hand, SO42− was found to be very aggressive to copper dissolution and led to the formation of relatively deep pits (about 0.5 mm). Raman microspectroscopic analyses were performed on the freshly prepared undried caps that formed at the top of the pits and allowed the identification of several corrosion products by a comparison with standard copper mineral samples. The most complicated cap structure was observed in the presence of all three anions with distinct regions of the pit corresponding to cuprite (Cu2O), eriochalcite (CuCl2 · 2H2O), atacamite and/or botallackite [Cu2Cl(OH)3] and brochantite [Cu4(SO4)(OH)6].

bicarbonate ions chloride ions copper corrosion pitting corrosion potable water Raman microspectroscopy sulphate ions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.-H. Strehblow and B. Titze, Electrochim. Acta 25 (1980) 839.Google Scholar
  2. 2.
    H.-D. Speckmann, M.M. Lohrengel, J.W. Schultze and H.-H. Strehblow, Ber Bunsenges. Phys. Chem. 89 (1985) 392.Google Scholar
  3. 3.
    M.R.G. de Chialvo, R.C. Salvarezza, D. Vásquez Moll and A.J. Arvia, Electrochim. Acta 30 (1985) 1501.Google Scholar
  4. 4.
    M.R.G. de Chialvo, J.O. Zerbino, S.L. Marchiano and A.J. Arvia, J. Appl. Electrochem. 16 (1986) 517.Google Scholar
  5. 5.
    J. Gómez Becerra, R.C. Salvarezza and A.J. Arvia, Electrochim. Acta 33 (1988) 613.Google Scholar
  6. 6.
    C.I. Elsner, R.C. Salvarezza and A.J. Arvia, Electrochim. Acta 33 (1988) 1735.Google Scholar
  7. 7.
    M. Wanner, H. Wiese and K.G. Weil, Ber Bunsenges. Phys. Chem. 92 (1988) 736.Google Scholar
  8. 8.
    M. Drogowska, L. Brossard and H. Ménard, Surf. Coat. Technol. 34 (1988) 383.Google Scholar
  9. 9.
    M. Pérez Sánchez, M. Barrera, S. González, R.M. Souto, R.C. Salvarezza and A.J. Arvia, Electrochim. Acta 35 (1990) 1337.Google Scholar
  10. 10.
    M.M. Laz, R.M. Souto, S. González, R.C. Salvarezza and A.J. Arvia, Electrochim. Acta 37 (1992) 655.Google Scholar
  11. 11.
    M. Pérez Sánchez, R.M. Souto, M. Barrera, S. González, R.C. Salvarezza and A.J. Arvia, Electrochim. Acta 38 (1993) 703.Google Scholar
  12. 12.
    S.B. Ribotta, M.E. Folquer and J.R. Vilche, Corrosion 51 (1995) 682.Google Scholar
  13. 13.
    R.M. Souto, M.M. Laz and S. González, An. Quim. Int. Ed. 93 (1997) 252.Google Scholar
  14. 14.
    S. González, M. Pérez, M. Barrera, A.R. González Elipe and R.M. Souto, J. Phys. Chem. B 102 (1998) 5483.Google Scholar
  15. 15.
    H.S. Campbell, J. Inst. Metals 77 (1950) 345.Google Scholar
  16. 16.
    V.F. Lucey, Br. Corros. J. 2 (1967) 175.Google Scholar
  17. 17.
    E. Mattsson and A.M. Fredriksson, Br. Corros. J. 3 (1968) 246.Google Scholar
  18. 18.
    G.G. Geesey, P.J. Bremer, W.R. Fischer, D. Wagner, C.W. Keevil, J. Walker, A.H.L. Chamberlain and P. Angell, in G.G. Geesey, Z. Lewandowski and H.-C. Flemming, (Eds), 'Biofouling and Biocorrosion in Industrial Water Systems' (CRC Press, Boca Raton, Florida 1990), p. 243.Google Scholar
  19. 19.
    M. Drogowska, L. Brossard and H. Ménard, J. Electrochem. Soc. 139 (1992) 39.Google Scholar
  20. 20.
    I. Milošev, M. Metikoš-Huković, M. Drogowska, H. Ménard and L. Brossard, J. Electrochem. Soc. 139 (1992) 2409.Google Scholar
  21. 21.
    M. Drogowska, L. Brossard and H. Ménard, J. Appl. Electrochem. 24 (1994) 344.Google Scholar
  22. 22.
    M. Edwards and J.F. Ferguson, Am. Water Works Assoc. 85 (1993) 105.Google Scholar
  23. 23.
    M. Edwards, J.F. Ferguson and S.H. Reiber, Am. Water Works Assoc. 86 (1994) 74.Google Scholar
  24. 24.
    M. Edwards, J. Rehring and T. Meyer, Corrosion 50 (1994) 366.Google Scholar
  25. 25.
    J.P. Duthil, G. Mankowski and A. Giusti, Corros. Sci. 38 (1996) 1839.Google Scholar
  26. 26.
    G. Mankowski, J.P. Duthil and A. Giusti, Corros. Sci. 39 (1997) 27.Google Scholar
  27. 27.
    R.M. Souto, S. Gonzalez, R.C. Salvarezza and A.J. Arvia, Electrochim. Acta 39 (1994) 2619.Google Scholar
  28. 28.
    F.M. Alkharafi and H.M. Shalaby, Corrosion 51 (1995) 469.Google Scholar
  29. 29.
    R.E. Lobnig, R.P. Frankenthal, D.J. Siconolfi, J.D. Sinclair and M. Stratmann, J. Electrochem. Soc. 141 (1994) 2935.Google Scholar
  30. 30.
    M.E. Vela, G. Andreasen, S.G. Aziz, R.C. Salvarezza and A.J. Arvia, Electrochim. Acta 43 (1998) 3.Google Scholar
  31. 31.
    H. Strandberg and L.G. Johansson, J. Electrochem. Soc. 145 (1998) 1093.Google Scholar
  32. 32.
    K.P. Fitzgerald, J. Nairn and A. Atrens, Corros. Sci. 40 (1998) 2029.Google Scholar
  33. 33.
    S. Jouen, M. Jean and B. Hannoyer, Surf. Interface Anal. 30 (2000) 145.Google Scholar
  34. 34.
    A.G. Nord, K. Tronner and A.J. Boyce, Water, Air, Soil Pollut. 127 (2001) 193.Google Scholar
  35. 35.
    J.R. Dojlido and G.A. Best, in 'Chemistry of Water and Water Pollution' (Ellis Horwood, New York, 1993).Google Scholar
  36. 36.
    N.J. Laycock and R.C. Newman, Corros. Sci. 39 (1997) 1771.Google Scholar
  37. 37.
    R.S. Tobias, in A. Anderson (Ed.), 'The Raman Effect' (Marcel Dekker, New York, 1973), p. 408.Google Scholar
  38. 38.
    M. Metikoš-Huković, R. Babić and A. Marinović, J. Electrochem. Soc. 145 (1998) 4045.Google Scholar
  39. 39.
    C.A. Melendres, S. Xu and B. Tani, J. Electroanal. Chem. 162 (1984) 343.Google Scholar
  40. 40.
    J.C. Hamilton, J.C. Farmer and R.J. Anderson, J. Electrochem. Soc. 133 (1986) 739.Google Scholar
  41. 41.
    S.T. Mayer and R.H. Muller, J. Electrochem. Soc. 139 (1992) 426.Google Scholar
  42. 42.
    H.Y.H. Chan, C.G. Takoudis and M.J. Weaver, J. Phys. Chem. B 103 (1999) 357.Google Scholar
  43. 43.
    D.A. Scott, Stud. Conserv. 45 (2000) 39.Google Scholar
  44. 44.
    L. Burgio and R.J.H. Clark, Spectrochem. Acta Part A 57 (2001) 1491.Google Scholar
  45. 45.
    R.L. Frost, P.A. Williams, W. Martens and J.T. Kloprogge, J. Raman Spectrosc. 33 (2002) 752.Google Scholar
  46. 46.
    R.L. Frost, W. Martens, J.T. Kloprogge and P.A. Williams, J. Raman Spectrosc. 33 (2002) 801.Google Scholar
  47. 47.
    W. Martens, R.L. Frost, J.T. Kloprogge and P.A. Williams, J. Raman Spectrosc. 34 (2003) 145.Google Scholar
  48. 48.
    R.L. Frost, Spectrochem. Acta Part A 59 (2003) 1195.Google Scholar
  49. 49.
    K.P.J Williams, G.D. Pitt, D.N. Batchelder and B.J. Kip, Appl. Spectrosc. 48 (1994) 232.Google Scholar
  50. 50.
    B.E. Wilde and E. Williams, Electrochim. Acta 16 (1971) 1971.Google Scholar
  51. 51.
    T. Suzuki, M. Yamabe and Y. Kitamura, Corrosion 29 (1973) 70.Google Scholar
  52. 52.
    P. Perroud, Athena Mineralogy (http://un2sg4.unige.ch/athena/mineral/mineral.htm).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • A.G. Christy
    • 1
  • A. Lowe
    • 2
  • V. Otieno-Alego
    • 3
    • 4
  • M. Stoll
    • 2
  • R.D. Webster
    • 4
  1. 1.Department of GeologyAustralian National UniversityCanberraAustralia
  2. 2.Department of EngineeringAustralian National UniversityCanberraAustralia
  3. 3.Division of Science and DesignUniversity of CanberraCanberraAustralia
  4. 4.Australian Federal PoliceCanberraAustralia

Personalised recommendations