Advertisement

Journal of Applied Electrochemistry

, Volume 34, Issue 1, pp 31–36 | Cite as

Water balance in a free-breathing polymer electrolyte membrane fuel cell

  • Tuomas MennolaEmail author
  • Matti Noponen
  • Tanja Kallio
  • Mikko Mikkola
  • Tero Hottinen
Article

Abstract

Water balance in a free-breathing polymer electrolyte membrane fuel cell was studied, focusing on the effect of anode conditions. The methods used were current distribution measurement, water collection from the anode outlet, and the measurement of cell polarization and resistance. Current density levels were 100 and 200 mA cm−2, temperature levels were 40 and 60 °C, and hydrogen stoichiometry range was from 1.5 to 2.5. The direction of hydrogen flow was varied. The fraction of product water exiting through the anode outlet varied from 0 to 58%, and it was found to increase with increasing temperature and hydrogen flow rate. When the general direction of hydrogen flow was against the direction of air flow, the percentage of water removal through the anode was smaller and the current distributions were more even than in the cases where the direction was the same as that of the air flow. This probably resulted from a more favorable distribution of water over the active area. The results also indicate that the net water transport coefficient varies across the active area. In further measurements, operation with the anode side in dead-end mode was investigated. It was also found that water distribution was more favorable when the general direction of hydrogen flow was against the air flow.

anode current distribution free-breathing PEMFC water balance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.N. Büchi and S. Srinivasan, J. Electrochem. Soc. 144 (1997) 2767.Google Scholar
  2. 2.
    D. Picot, R. Metkemeijer, J.J. Bezian and L. Rouveyre, J. Power Sources 75 (1998) 251.Google Scholar
  3. 3.
    K.-W. Choi, D.-H. Peck, C.S. Kim, D.-R. Shin and T.-H. Lee, J. Power Sources 86 (2001) 197.Google Scholar
  4. 4.
    G.J.M. Janssen and M.L.J. Overvelde, J. Power Sources 101 (2001) 117.Google Scholar
  5. 5.
    T.F. Fuller and J. Newman, J. Electrochem. Soc. 139 (1992) 1332.Google Scholar
  6. 6.
    T.A. Zawodsinski, C. Derouin, S. Radzinski, R.J. Sherman, V.T. Smith, T.E. Springer and S. Gottesfeld, J. Electrochem. Soc. 140 (1993) 1041.Google Scholar
  7. 7.
    T.A. Zawodzinski, J. Davey, J. Valerio and S. Gottesfeld, Electrochim. Acta 40 (1995) 297.Google Scholar
  8. 8.
    M. Ise, K.D. Kreuer and J. Maier, Solid State Ionics 125 (1999) 213.Google Scholar
  9. 9.
    T.E. Springer, T.A. Zawodsinski and S. Gottesfeld, J. Electrochem. Soc. 138 (1991) 2334.Google Scholar
  10. 10.
    T.V. Nguyen and R.E. White, J. Electrochem. Soc. 140 (1993) 2178.Google Scholar
  11. 11.
    M. Wöhr, K. Bolwin, W. Schurnberger, M. Fischer, W. Neubrand and G. Eigenberger, Int. J. Hydrogen Energy 23 (1998) 213.Google Scholar
  12. 12.
    T. Okada, G. Xie, O. Gorseth, S. Kjelstrup, N. Nakamura and T. Arimura, Electrochim. Acta 43 (1998) 3741.Google Scholar
  13. 13.
    P. Futerko and I.-M. Hsing, Electrochim. Acta 45 (2000) 1741.Google Scholar
  14. 14.
    K. Dannenberg, P. Ekdunge and G. Lindbergh, J. Appl. Electrochem. 30 (2000) 1377.Google Scholar
  15. 15.
    S. Dutta, S. Shimpalee and J.W. Van Zee, Int. J. Heat Mass Transfer 44 (2001) 2029.Google Scholar
  16. 16.
    D.M. Bernardi and M. Verbrugge, AIChE J. 37 (1991) 1151.Google Scholar
  17. 17.
    D.M. Bernardi and M. Verbrugge, J. Electrochem. Soc. 139 (1992) 2477.Google Scholar
  18. 18.
    V. Gurau, H. Liu and S. Kakaç, AIChE J. 44 (1998) 2410.Google Scholar
  19. 19.
    M. Eikerling, Yu.I. Kharkats, A.A. Kornyshev and Yu.M. Volfkovich, J. Electrochem. Soc. 145 (1998) 2684.Google Scholar
  20. 20.
    D. Singh, D.M. Lu and N. Djilali, Int. J. Eng. Sci. 37 (1999) 431.Google Scholar
  21. 21.
    S. Um, C.-Y. Wang and K.S. Chen, J. Electrochem. Soc. 147 (2000) 4485.Google Scholar
  22. 22.
    G. Murgia, L. Pisani, M. Valentini and B. D'Aguanno, J. Electrochem. Soc. 149 (2002) A31.Google Scholar
  23. 23.
    N. Djilali and D. Lu, Int. J. Therm. Sci. 41 (2002) 29.Google Scholar
  24. 24.
    T.F. Fuller and J. Newman, J. Electrochem. Soc. 140 (1993) 1218.Google Scholar
  25. 25.
    A.C. West and T.F. Fuller, J. Appl. Electrochem. 26 (1996) 557.Google Scholar
  26. 26.
    G.J.M. Janssen, J. Electrochem. Soc. 148 (2001) A1313.Google Scholar
  27. 27.
    K. Dannenberg, P. Ekdunge and G. Lindbergh, J. Appl. Electrochem. 30 (12) (2000) 1377.Google Scholar
  28. 28.
    P.J.S. Vie, dissertation 'Characterisation and Optimisation of the Polymer Electrolyte Fuel Cell, Norges teknisk-naturvitenskapelige universitet, Norway (2002).Google Scholar
  29. 29.
    A. Rowe and X. Li, J. Power Sources 102 (2001) 82.Google Scholar
  30. 30.
    L. You and H. Liu, Int. J. Heat and Mass Transfer 45 (2002) 2277.Google Scholar
  31. 31.
    R.J. Bellows, M.Y. Lin, M. Arif, A.K. Thompson and D. Jacobson, J. Electrochem. Soc. 146 (1999) 1099.Google Scholar
  32. 32.
    M.M. Mench, Q.L. Dong and C.Y. Wang, In situ water distribution measurements in an operating polymer electrolyte fuel cell, to appear in J.W. Van Zee, M. Murthy, T.F. Fuller and S. Gottesfeld (Eds), Proceedings of the 202nd meeting of the Electrochemical Society: ‘Proton Conducting Membrane Fuel Cells III’, (2003).Google Scholar
  33. 33.
    M. Noponen, T. Mennola, M. Mikkola, T. Hottinen and P. Lund, J. Power Sources 106 (2002) 304.Google Scholar
  34. 34.
    M. Noponen, T. Hottinen, T. Mennola, M. Mikkola and P. Lund, J. Appl. Electrochem. 32 (2002) 1081.Google Scholar
  35. 35.
    T. Hottinen, M. Noponen, T. Mennola, O. Himanen, M. Mikkola and P. Lund, J. Appl. Electrochem. 33 (2003) 265.Google Scholar
  36. 36.
    T. Mennola, M. Noponen, M. Aronniemi, T. Hottinen, M. Mikkola, O. Himanen and P. Lund, J. Appl. Electrochem. 33 (2003) 979.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Tuomas Mennola
    • 1
    Email author
  • Matti Noponen
    • 1
  • Tanja Kallio
    • 2
  • Mikko Mikkola
    • 1
  • Tero Hottinen
    • 1
  1. 1.Laboratory of Advanced Energy SystemsHelsinki University of TechnologyHUTFinland
  2. 2.Laboratory of Physical Chemistry and ElectrochemistryHelsinki University of TechnologyHUTFinland

Personalised recommendations