Advertisement

Journal of Applied Electrochemistry

, Volume 34, Issue 1, pp 95–102 | Cite as

Effect of PgTPhPBr on the electrochemical and corrosion behaviour of 304 stainless steel in H2SO4 solution

  • A.A. Hermas
  • M.S. Morad
  • M.H. Wahdan
Article

Abstract

Weight-loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements were used to study the inhibition of 304 stainless steel corrosion in 1 M H2SO4 at 50 °C by propargyltriphenylphosphonium bromide (PgTPhPBr). The inhibiting effects of propyltriphenylphosphonium bromide (PrTPhPBr) and propargyl alcohol (PA) were also studied for the sake of comparison. For the investigated compounds, Tafel extrapolation in the cathodic region gave a corrosion inhibition efficiency of 98% at 1 × 10−3 M. Adsorption of both PgTPhPBr and PA was found to follow Frumkin's isotherm while adsorption of PrTPhPBr obeys that of Temkin. In the anodic domain, PgTPhPBr acted as a good passivator. The impedance spectra recorded at the corrosion potential (Ecor) revealed that the charge transfer process in the inhibited and uninhibited states controls corrosion of 304 stainless steel.

corrosion EIS inhibition phosphonium compounds stainless steel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    'Stainless Steel Europe' Wiley Van der Hoven Chem. Eng. 6 (9) (1994), p. 49.Google Scholar
  2. 2.
    I.L. Rozenfeld, 'Corrosion Inhibitors' (McGraw-Hill, New York, 1981).Google Scholar
  3. 3.
    A.M. Al-Mayouf, A.A. Al-Suhybani and A.K. Al-Ameery, Desalination 116 (1998) 25 and references therein.Google Scholar
  4. 4.
    G.L. Foster, B.D. Oakes and C.H. Kucera, Ind. Eng. Chem. 51 (1959) 825.Google Scholar
  5. 5.
    M. Bartos and N. Hackerman, J. Electrochem. Soc. 139 (1992) 3428.Google Scholar
  6. 6.
    D. Jayaperumal, S. Muralidharan, P. Subramanian, G. Venkatachari and S. Senthilvel, Anti-Corros. Meth. Mater. 44 (1997) 265.Google Scholar
  7. 7.
    M.S. Morad, Mater. Chem. Phys. 60 (1999) 188.Google Scholar
  8. 8.
    Y. Feng, K.S. Siow, W.K. Teo and A.K. Hsieh, Corros. Sci. 41 (1999) 829.Google Scholar
  9. 9.
    M. Gojic, Corros. Sci. 43 (2001) 919.Google Scholar
  10. 10.
    W.J. Lorenz and H. Fischer, Ber. Bunsenges Phys. Chem. 69 (1965) 689.Google Scholar
  11. 11.
    M. Morad, J. Morvan and J. Pagetti, 8th European Symposium on 'Corrosion Inhibition', Ann. Uni. Ferrara, N.S. Sez., Suppl. 10 (1995) 159.Google Scholar
  12. 12.
    M.S. Abdel Aal and M.S. Morad, Br. Corros. J. 36 (2001) 253.Google Scholar
  13. 13.
    M.S. Abdel-Aal, M.Th. Makhlof and A.A. Hermas, 7th European Symposium on 'Corrosion Inhibition', Ann. Uni. Ferrara, N. S. Sez., Suppl. 9 (1990) 1143.Google Scholar
  14. 14.
    M.S. Morad, J. Appl. Electrochem. 29 (1999) 619.Google Scholar
  15. 15.
    M.S. Morad, Corros. Sci. 42 (2000) 1307.Google Scholar
  16. 16.
    A.A. Hermas, K. Ogura, S. Takagi and T. Adachi, Corrosion 51 (1995) 3.Google Scholar
  17. 17.
    P. Chen, T. Shinohara and S. Tsujikawa, Proceedings of the 41th Japan Corrosion Conference, JSCE, Oct., Matsuyama, Japan (1994), p. 85.Google Scholar
  18. 18.
    B.A. Boukamp, 'Equivalent Circuit (EQUIVCRT. PAS), User's Manual' (2nd edn., 1989).Google Scholar
  19. 19.
    J.O'M. Bockris and B. Yang, J. Electrochem. Soc. 138 (1991) 2237.Google Scholar
  20. 20.
    A.A. Hermas, K. Ogura and T. Adachi, Electrochim. Acta 40 (1995) 837.Google Scholar
  21. 21.
    A.A. Hermas and K. Ogura, Electrochem. Acta 41 (1996) 1601.Google Scholar
  22. 22.
    A.A. Hermas, M.S. Morad and K. Ogura, Corros. Sci. 41 (1999) 2251.Google Scholar
  23. 23.
    A.A. Hermas, Br. Corros. J. 34 (1999) 132.Google Scholar
  24. 24.
    G. Zheng, B. Popov and R.E. White, J. Electrochem. Soc. 141 (1994) 1526.Google Scholar
  25. 25.
    R.D. Armstrong, M.F. Bell and A.A. Metcalf, 'Specialist Periodical Reports of Electrochemistry', Vol. 6 (Chemical Society, London, 1978), p. 98.Google Scholar
  26. 26.
    K. Juttner, Electrochim. Acta 35 (1990) 1501.Google Scholar
  27. 27.
    F.B. Growcock, Chem. Technol. 19 (1989) 564.Google Scholar
  28. 28.
    K. Hladky, L.M. Callow and J.L. Dawson, Br. Corros. J. 15 (1980) 20.Google Scholar
  29. 29.
    E. McCafferty and J.V. McArdle, J. Electrochem. Soc. 142 (1995) 1447.Google Scholar
  30. 30.
    S. Muralidharan, K.L. Phani, S. Pitchumani, S. Ravichandran and S.V.K. Iyer, J. Electrochem. Soc 142 (1995) 1478.Google Scholar
  31. 31.
    E. Guilminot, J-J. Rameau, F. Dalard, C. Degrigny and X. Hiron, J. Appl. Electrochem. 30 (2000) 21.Google Scholar
  32. 32.
    M.A. Quraishi, J. Rawat and M. Ajmal, J. Appl. Electrochem. 30 (2000) 745.Google Scholar
  33. 33.
    A. Popova, E. Sokolova, S. Raicheva and M. Christov, Corros. Sci. 45 (2003) 33.Google Scholar
  34. 34.
    L.I. Antropov, J. Phys. Chem. USSR 25 (1951) 1494; 37 (1963) 865.Google Scholar
  35. 35.
    R.T. Brigham, Corros. Sci. 29 (1989) 995.Google Scholar
  36. 36.
    R.C. Ayer and N. Hackerman, J.Electrochem. Soc. 110 (1963) 21.Google Scholar
  37. 37.
    A.A. Aksut, Electrochim. Acta 28 (1983) 1177.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • A.A. Hermas
    • 1
  • M.S. Morad
    • 1
  • M.H. Wahdan
    • 1
  1. 1.Chemistry Department, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations