Journal of Applied Electrochemistry

, Volume 34, Issue 1, pp 87–94 | Cite as

Electrochemical oxidation of several chlorophenols on diamond electrodes: Part II. Influence of waste characteristics and operating conditions

  • P. Cañizares
  • J. García-Gómez
  • C. Sáez
  • M.A. RodrigoEmail author


The electrochemical treatment of wastes containing several chlorophenols (4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol) using boron-doped diamond electrodes is described. Both direct and indirect processes are involved in the oxidation of the organics, indirect processes being mediated by oxidising agents (such as hypochlorite or peroxodisulphate) generated on the surface of the anode. The influence of the waste characteristics (initial concentration, pH and supporting media) is reported. The presence of reversible redox reagents, like the sulphate/peroxodisulphate redox couple, plays an important role in determining the global oxidation rate. Hypochlorite formation depends only on the organochlorinated compound and not on the presence of other reversible redox reagents in the waste. Alkaline pH favours the accumulation of carboxylic acid intermediates since, under these conditions, the oxidation rate of such compounds is low. The influence of the operating conditions (temperature and current density) is also discussed. The results show that high temperatures improve the rate of the mediated reactions and that high current density values decrease the efficiency of the direct electrochemical processes.

boron-doped diamond chlorophenols current density electrochemical oxidation temperature wastes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Papouchado, R.W. Sandford, G. Petrie and R.N. Adams, J. Electroanal. Chem. 65 (1975) 275.Google Scholar
  2. 2.
    H. Sharifian and D.W. Kirk, J. Electrochem. Soc. 133 (1986) 921.Google Scholar
  3. 3.
    Ch. Comninellis and C. Pulgarin, J. Appl. Electrochem. 21 (1991) 703.Google Scholar
  4. 4.
    U. Leffrang, K. Ebert, K. Flory, U. Galla and H. Schmieder, Sep. Sci. Technol. 30 (1995) 1883.Google Scholar
  5. 5.
    J.L. Boudenne and O. Cerclier, Water Res. 33 (1999) 494.Google Scholar
  6. 6.
    E. Brillas, R.M. Bastida and E. Llosa, J. Electrochem. Soc. 142 (1995) 1733.Google Scholar
  7. 7.
    A.M. Polcaro and S. Palmas, Ind. Eng. Chem. Res. 36 (1997) 1791.Google Scholar
  8. 8.
    M.O. Azzam, M. Al-Tarazi and Y. Tahboub, J. Haz. Mater. B75 (2000) 99.Google Scholar
  9. 9.
    M.A. Rodrigo, P.A. Michaud, I. Duo, M. Panizza, G. Cerisola and Ch. Comninellis, J. Electrochem. Soc. 148 (2001) D60.Google Scholar
  10. 10.
    M.S. Ureta-Zañartu, P. Bustos, C. Berríos, M.C. Diez, M.L. Mora and C. Gutiérrez, Electrochim. Acta 47 (2002) 2399.Google Scholar
  11. 11.
    P.A. Michaud, E. Mahé, W. Haenni, A. Perret and Ch. Comninellis, Electrochem. Solid-State Lett. 3 (2000) 77.Google Scholar
  12. 12.
    P. Cañizares, J. García-Gómez, J. Lobato and M.A. Rodrigo, Ind. Eng. Chem. Res. 42 (2003) 956.Google Scholar
  13. 14.
    R. Kötz, S. Stucki and B. Carcer, J. Appl. Electrochem. 21 (1991) 14.Google Scholar
  14. 13.
    M. Gattrell and D.W. Kirk, Can. J. Chem. Eng. 68 (1990) 997.Google Scholar
  15. 15.
    S. Stucki, R. Kötz, B. Carcer and W. Suter, J. Appl. Electrochem. 21 (1991) 99.Google Scholar
  16. 16.
    Y.M. Awad and N.A. Abuzaid, Sep. Pur. Technol. 18 (2000) 227.Google Scholar
  17. 17.
    L. Gherardini, P.A. Michaud, M. Panizza, Ch. Comninellis and N. Vatistas, J. Electrochem. Soc. 148 (2001) D78.Google Scholar
  18. 18.
    M. Gattrell and D.W. Kirk, J. Electrochem. Soc. 6 (1993) 1534.Google Scholar
  19. 19.
    R. Cossu, A.M. Polcaro, M.C. Lavagnolo, M. Mascia, S. Palmas and F. Renoldi, Environ. Sci. Technol. 32 (1998) 3570.Google Scholar
  20. 20.
    N. Belhadj and A. Savall, J. Electrochem. Soc. 145 (1998) 3427.Google Scholar
  21. 21.
    M. Panizza, P.A. Michaud, G. Cerisola and Ch. Comninellis, J. Electroanal. Chem. 507 (2001) 206.Google Scholar
  22. 22.
    P. Cañizares, J. García-Gómez, C. Saez and M.A. Rodrigo, J. Appl. Electrochem., In press.Google Scholar
  23. 23.
    Ch. Comninellis and A. Nerini, J. Appl. Electrochem. 25 (1995) 23.Google Scholar
  24. 24.
    R.A. Larson and E.J. Weber, 'Reaction Mechanisms in Environmental Organic Chemistry', (CRC Press, Boca Raton 1994) p. 433.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • P. Cañizares
    • 1
  • J. García-Gómez
    • 1
  • C. Sáez
    • 1
  • M.A. Rodrigo
    • 1
    Email author
  1. 1.Departamento de Ingeniería Química, Facultad de Ciencias QuímicasUniversidad de Castilla La ManchaCiudad RealSpain

Personalised recommendations