Journal of Applied Electrochemistry

, Volume 34, Issue 1, pp 37–46 | Cite as

Electrochemical behaviour of galena (PbS) in aqueous nitric acid and perchloric acid solutions

  • Yu. Mikhlin
  • A. Kuklinskiy
  • E. Mikhlina
  • V. Kargin
  • I. Asanov


The electrochemical reactions of natural n-type PbS in nitric and perchloric acid solutions have been studied using cyclic voltammetry, SEM and XPS. Several oxidation stages, which differ in their electrode kinetics, surface topography and sulfide phase composition, particularly Pb/S ratios and the state of sulfur, were demonstrated. The quantities of surface sulfate and thiosulfate were rather low at PbS oxidized in HNO3 solutions, even at high potentials. The magnitude of the reoxidation peaks of cathodically formed products, primarily Pb0, was found to increase as the electrodissolution of PbS on the preliminary positive-going sweep was hindered. It is proposed that the predominant donor-like defects in the disordered reaction layers limit the concentration and mobility of holes, thus inhibiting PbS oxidation and promoting metallic lead deposition in the course of potential cycling. The model developed as an alternative to the traditional explanations uses the concept of negative correlation energy centres resembling those in non-crystalline chalcogenide semiconductors.

disordered semiconductor lead sulfide nitric acid perchloric acid sulfuric acid voltammetry XPS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.L. Paul, M.J. Nicol, J.W. Diggle and A.P. Saunders, Electrochim. Acta 23 (1978) 625.Google Scholar
  2. 2.
    R.L. Paul, M.J. Nicol, J.W. Diggle and A.P. Saunders, Electrochim. Acta 23 (1978) 635.Google Scholar
  3. 3.
    B. Dandapani and E. Ghali, J. Electrochem. Soc. 129 (1982) 271.Google Scholar
  4. 4.
    P. Sivenas and F.R. Foulkes, Electrochim. Acta 29 (1984) 1215.Google Scholar
  5. 5.
    Yu.L. Mikhlin, P.S. Galkin and N.A. Kopteva, Izv. SO AN SSSR. Ser. khim. nauki 7 (1988) 11.Google Scholar
  6. 6.
    E. Ahlberg and J. Ásbjornsson, Hydrometallurgy 34 (1993) 171.Google Scholar
  7. 7.
    P.R. Holmes and F.K. Crundwell, Hydrometallurgy 39 (1995) 353.Google Scholar
  8. 8.
    I. Cisneros-Gonzalez, M.T. Oropeza-Guzman and I. Gonzalez, Hydrometallurgy 53 (1999) 133.Google Scholar
  9. 9.
    I. Cisneros-Gonzalez, M.T. Oropeza-Guzman and I. Gonzalez, Electrochim. Acta 45 (2000) 2729.Google Scholar
  10. 10.
    J.L. Nava, M.T. Oropeza and I. González, Electrochim. Acta 47 (2002) 1513.Google Scholar
  11. 11.
    A.J. Parker, R.L. Paul and G.P. Power, J. Electroanal. Chem. 118 (1981) 305.Google Scholar
  12. 12.
    A.N. Buckley, I.C. Hamilton and R. Woods, in E. Fossberg (Ed.), ‘Flotation of Sulphide Minerals’ (Elsevier, Amsterdam, 1985), p. 41.Google Scholar
  13. 13.
    A.N. Buckley and R. Woods, J. Appl. Electrochem. 26 (1996) 899.Google Scholar
  14. 14.
    G.L. Pashkov, E.V. Mikhlina, A.G. Kholmogorov and Yu.L. Mikhlin, Hydrometallurgy 63 (2002) 171.Google Scholar
  15. 15.
    I.N. Plaksin and R.Sh. Shafeev, Trans. Inst. Min. Metal. 72 (1963) 715.Google Scholar
  16. 16.
    E.H.C. Parker and D. Williams, Thin Solid Films 35 (1976) 373.Google Scholar
  17. 17.
    P.E. Richardson and C.S. O'Dell, J. Electrochem. Soc. 132 (1985) 1350.Google Scholar
  18. 18.
    A.N. Buckley and R. Woods, Appl. Surf. Sci. 17 (1984) 401.Google Scholar
  19. 19.
    Yu.L. Mikhlin, A.V. Pashis and G.L. Pashkov, Izv. SO AN SSSR. Ser. khim. nauki 8 (1986) 123.Google Scholar
  20. 20.
    D. Fornasiero, F.S. Li, J. Ralston and R.St.C. Smart, J. Colloid Interface Sci. 164 (1994) 333.Google Scholar
  21. 21.
    C.A. Prestige, W.M. Skinner, J. Ralston and R.St.C. Smart, Colloids Surf. A 105 (1995) 325.Google Scholar
  22. 22.
    G. Wittstock, I. Kartio, D. Hirsch, S. Kunze and R. Szargan, Langmuir 12 (1996) 5709.Google Scholar
  23. 23.
    I. Kartio, K. Laajalehto, T. Kaurila and E.J. Suoninen, Appl. Surf. Sci. 93 (1996) 167.Google Scholar
  24. 24.
    I.V. Chernyshova and S.I. Andreev, Appl. Surf. Sci. 108 (1997) 225.Google Scholar
  25. 25.
    I. Kartio, K. Laajalehto, E.J. Suoninen, A.N. Buckley and R. Woods, Colloids Surf. A 133 (1998) 303.Google Scholar
  26. 26.
    Yu.L. Mikhlin, Ye.V. Tomashevich, I.P. Asanov and A.V. Okotrub, Poverkhnost. Rentgen. Neitron. Synhrotron. Issled. 12 (1998) 77.Google Scholar
  27. 27.
    R.St.C. Smart, W.M. Skinner and A.R. Gerson, Surf. Interface Anal. 28 (1999) 101.Google Scholar
  28. 28.
    Yu. Mikhlin, Ye. Tomashevich, I. Asanov and A. Okotrub, in R. Woods and F.M. Doyle (Eds), ‘Electrochemistry in Mineral and Metal Processing V’ (The Electrochemical Society Proceeding Series, Pennington, NJ, 2000), p. 282.Google Scholar
  29. 29.
    P. Novak and K. Laajalehto, Appl. Surf. Sci. 157 (2000) 101.Google Scholar
  30. 30.
    P. Novak, K. Laajalehto and I. Kartio, Colloids Surf. A 161 (2000) 447.Google Scholar
  31. 31.
    N.F. Mott and E.A. Davis, 'Electron Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979).Google Scholar
  32. 32.
    M. Kastner, D. Adler and H. Fritzsche, Phys. Rev. Lett. 37 (1976) 1504.Google Scholar
  33. 33.
    M. Kastner and H. Fritzsche, Phil. Mag. 37 (1978) 199.Google Scholar
  34. 34.
    K.D. Tsendin (Ed.), ‘Electron Phenomena in Chalcogenide Glassy Semiconductors’, (Nauka, St. Peterburg, 1996).Google Scholar
  35. 35.
    C.M. Eggleston and M.F. Hochella, Jr., in ‘Environmental Geochemistry of Sulfide Oxidation’ ACS Symposium Series 550 (1994), p. 201.Google Scholar
  36. 36.
    U. Becker and M.F. Hochella, Jr., Geochim. Cosmochim. Acta 60 (1996) 2413.Google Scholar
  37. 37.
    C.M. Eggleston, Geochim. Cosmochim. Acta 61 (1997) 657.Google Scholar
  38. 38.
    B.S. Kim, R.A. Hayes, C.A. Prestige, J. Ralston and R.St.C. Smart, Langmuir 11 (1995) 2554.Google Scholar
  39. 39.
    S.R. Higgins and R.J. Hamers, Surf. Sci. 324 (1995) 263.Google Scholar
  40. 40.
    G. De Giudici and P. Zuddas, Geochim. Cosmochim. Acta 65 (2001) 1381.Google Scholar
  41. 41.
    D. Briggs and M.P. Seach, ‘Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy’ (Wiley, Chichester and New York, 1983).Google Scholar
  42. 42.
    P.D. Scott and M.J. Nicol, in J.O'M Bockris, D.A.J. Rand, B.J. Welsh (Eds), ‘Trends in Electrochemistry’ (Plenum, New York and London, 1977) p. 303.Google Scholar
  43. 43.
    X. Zeng and S. Bruckenstein, J. Electrochem. Soc. 146 (1999) 2549.Google Scholar
  44. 44.
    N.P. Osipovich and E.A. Streltsov, Russian J. Electrochem. 36 (2000) 1.Google Scholar
  45. 45.
    K. Sangval, ‘Etching of Crystals. Theory, Experiment, and Application’ (North-Holland, Amsterdam, 1987).Google Scholar
  46. 46.
    D.J. Droppert and Y. Shang, Hydrometallurgy 39 (1995) 169.Google Scholar
  47. 47.
    Yu.L. Mikhlin, Phys. Chem. Chem. Phys. 2 (2000) 5672.Google Scholar
  48. 48.
    G.M. Florianovich and R.M. Lazorenko-Manevich, Electrochim. Acta 42 (1997) 879.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Yu. Mikhlin
    • 1
  • A. Kuklinskiy
    • 1
  • E. Mikhlina
    • 1
  • V. Kargin
    • 1
  • I. Asanov
    • 2
  1. 1.Institute of Chemistry and Chemical Technology of SB RASKrasnoyarskRussia
  2. 2.Institute of Inorganic Chemistry of SB RASNovosibirskRussia

Personalised recommendations