Journal of Applied Electrochemistry

, Volume 33, Issue 12, pp 1211–1215 | Cite as

Electrochemical oxidation of p-chlorophenol on SnO2–Sb2O5 based anodes for wastewater treatment

  • Carmem L.P.S. Zanta
  • Pierre-Alan Michaud
  • Christos Comninellis
  • Adalgisa R. De Andrade
  • Julien. F.C. Boodts


The influence of an IrO2 interlayer between the Ti substrate and the SnO2–Sb2O5 coating on the electrode service life and on the efficiency of p-chlorophenol (p-CP) oxidation for wastewater treatment has been investigated. The results have shown that if the loading of the SnO2–Sb2O5 coating relative to the IrO2 interlayer loading (γ ratio defined by Equation 1) is high (γ = 20–30) the service life of the electrode can be increased without modification of the ability of this electrode to perform p-CP oxidation. This suggests that the oxidation of p-CP using a Ti/IrO2/SnO2–Sb2O5 electrode with high γ ratio (γ > 20) occurs only through the SnO2–Sb2O5 component of the electrode, with no interference of the IrO2 interlayer. However, the electrode potential at a given current density is considerably lower in the case of the Ti/IrO2/SnO2–Sb2O5 electrode. In order to explain this decrease in electrode potential we speculate that water is firstly discharged on IrO2, which is present in small amounts on the surface, forming hydroxyl radicals at a relatively low potential. These active hydroxyl radicals then migrate (spill over) towards the SnO2–Sb2O5 coating, where they are physiosorbed and react with p-CP leading to complete combustion.

anodes electro-oxidation hydroxyl radicals p-chlorophenol spray-pyrolysis wastewater treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.L. Anderson, AICHE Symp. Ser. 73 (1977) 265.Google Scholar
  2. 2.
    N. Al-Hayek and S. Dore, Environ. Tech. Lett. 6 (1985) 37.Google Scholar
  3. 3.
    Ch. Comninellis and C. Pulgarin, J. Appl. Electrochem. 21 (1991) 703.Google Scholar
  4. 4.
    Ch. Comninellis and C. Pulgarin, J. Appl. Electrochem. 23 (1993) 1083.Google Scholar
  5. 5.
    Ch. Comninellis and A. Nerini, J. Appl. Electrochem. 25 (1995) 23.Google Scholar
  6. 6.
    A.M. Polcaro and S. Palmas, Ind. Eng. Chem. Res. 36 (1997) 1791.Google Scholar
  7. 7.
    O. Simond, V. Schaller and Ch. Comninellis, Electrochim. Acta 42 (1997) 2009.Google Scholar
  8. 8.
    A.M. Polcaro, S. Palmas, F. Renoldi and M. Mascia, J. Appl. Electrochem. 29 (1999) 147.Google Scholar
  9. 9.
    M. Panizza, P.-A. Michaud, G. Cerisola and Ch. Comninellis, J. Electroanal. Chem. 507 (2001) 206.Google Scholar
  10. 10.
    B. Correa-Lozano, Ch. Comninellis and A. De Battisti, J. Appl. Electrochem. 27 (1997) 970.Google Scholar
  11. 11.
    B. Correa-Lozano, Ch. Comninellis and A. De Battisti, J. Appl. Electrochem. 26 (1996) 683.Google Scholar
  12. 12.
    B. Correa-Lozano, Ch. Comninellis and A. De Battisti, J. Electrochem. Soc. 143 (1996) 203.Google Scholar
  13. 13.
    S. Trasatti, 'Electrodes of conductive mettalic oxides' Part A, in (Ed.) (Elsevier, Amsterdam, 1980).Google Scholar
  14. 14.
    J.D. Rodgers, W. Jedral and N.J. Bunce, Environ. Sci. Technol. 33 (1999) 1453.Google Scholar
  15. 15.
    M.A. Rodrigo, P.-A. Michaud, M. Paniza, G. Cerisola and Ch. Comninellis, J. Electrochem. Soc. 148 (2001) D60.Google Scholar
  16. 16.
    G. FÓti, D. Gandini and Ch. Comninellis, Curr. Top. Electrochem. 5 (1997) 71.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Carmem L.P.S. Zanta
    • 1
  • Pierre-Alan Michaud
    • 2
  • Christos Comninellis
    • 2
  • Adalgisa R. De Andrade
    • 1
  • Julien. F.C. Boodts
    • 3
  1. 1.Departamento de Química –CCEN, UFAL Maceió-AlBrazil
  2. 2.Swiss Federal Institute of Technology, SB,ISPSwitzerland
  3. 3.Instituto de Química, UFUUberlândia-MGBrazil

Personalised recommendations