Skip to main content
Log in

Microalgal studies for the 21st Century

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Microalgal photosynthesis is efficient enough to fix CO2 in both atmosphere and industrially discharged gases, and is a possible future alternative for CO2 reduction. This paper describes physiological responses of microalgal cells to extremely high CO2 concentrations, capability of microalgal cells to fix CO2 at both indoor and outdoor culture experiments, and efforts to establish a culture collection of marine microalgae. Recent researches indicate that microalgae are likely to play a key role in worldwide issues of the coming century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Hu, Q., N. Kurano, M. Kawachi, I. Iwasaki & S. Miyachi, 1998a. Ultrahigh-cell-density culture of a marine green alga, Chlorococcum littorale, in a flat-plate photobioreactor. Appl. Microbiol. Biotech. 49: 655–662.

    Google Scholar 

  • Hu, Q., H. Miyashita, I. Iwasaki, N. Kurano, S. Miyachi, M. Iwaki & S. Itoh, 1998b. A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 95: 13319–13323.

    Google Scholar 

  • Iwasaki, I., N. Kurano & S. Miyachi, 1996. Effects of high-CO2 stress on photosystem II in a green alga, Chlorococcum littorale, which has a tolerance to high CO2. J. Photochem. Photobiol. B: Biology 36: 327–332.

    Google Scholar 

  • Iwasaki, I., Q. Hu, N. Kurano & S. Miyachi, 1998. Effect of extremely high-CO2 stress on energy distribution between PS I and PS II in a 'High-CO2' tolerant green alga, Chlorococcum littorale, and the intolerant green alga, Stichococcus bacillaris. J. Photochem. Photobiol. B: Biology 44: 184–190.

    Google Scholar 

  • Kawachi, M., M. Kato, H. Ikemoto & S. Miyachi, 1996. Fatty acid composition of a new marine picoplankton species of the Chromophyta. J. appl. Phycol. 8: 397–401.

    Google Scholar 

  • Kodama, M., H. Ikemoto & S. Miyachi, 1993. A new species of highly CO2-tolerant fast-growing marine microalga for highdensity cultivation. J. Mar. Biotech. 1: 21–25.

    Google Scholar 

  • Kurano, N., T. Sasaki & S. Miyachi, 1998. Carbon dioxide and microalgae. In Inui T. et al. (eds), Advances in Chemical Conversions for Mitigating Carbon Dioxide Studies in Surface Science and Catalysis, vol. 114. Elsevier Science B.V., Amsterdam: 55–63.

    Google Scholar 

  • Mitsuhashi, S. & S.Miyachi, 1996. Amino acid sequence homology between N-and C-terminal halves of a carbonic anhydrase in Porphyridium purpureum, as deduced from the cloned cDNA. J. Biol. Chem. 271: 28703–28709.

    Google Scholar 

  • Mitsuhashi, S., T. Mizushima, E. Yamashita, S. Miyachi & T. Tsukihara, 2000a. Crystallization and preliminary X-ray diffraction studies of a carbonic anhydrase from the red alga, Porphyridium purpureum. Acta Cryst. D56: 210–211.

    Google Scholar 

  • Mitsuhashi, S., T. Mizushima, E. Yamashita, M. Yamamoto, T. Kumasaka, H. Moriyama, T. Ueki, S. Miyachi & T. Tsukihara, 2000b. X-ray structure of ?-carbonic anhydrase from the red alga, Porphyridium purpureum, reveals a novel catalytic site for CO2 hydration. J. Biol. Chem. 275: 5521–5526.

    Google Scholar 

  • Miyachi, S., 1995. Diversity of microalgae and their possible application. OECD Documents, Environmental Impacts of Aquatic Biotechnology: 28-31.

  • Miyashita, H., H. Ikemoto, N. Kurano, S. Miyachi & M. Chihara, 1993. Prasinococcus capsulatus gen. et sp. nov., a new marine coccoid prasinophyte. J. Gen. appl. Microbiol. 39: 571–582.

    Google Scholar 

  • Miyashita, H., K. Adachi, N. Kurano, H. Ikemoto, M. Chihara & S. Miyachi, 1997. Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol. 38: 274–281.

    Google Scholar 

  • Miyashita, H., H. Ikemoto, N. Kurano, K. Adachi, M. Chihara & S. Miyachi, 1996. Chlorophyll d as a major pigment. Nature 383: 402.

    Google Scholar 

  • Pesheva, I., M. Kodama, M. L. Dionisio-Sese & S. Miyachi, 1994. Changes in photosynthetic characteristics induced by transferring air-grown cells of Chlorococcum littorale to high-CO2 conditions. Plant Cell Physiol. 35: 379–387.

    Google Scholar 

  • Pronina, N. A., M. Kodama & S. Miyachi, 1993. Changes in intracellular pH values in various microalgae induced by raising CO2 concentrations. XV Int. Botanical Cong., Yokohama, Japan: 419.

  • Sasaki, T., N. A. Pronina, M. Maeshima, I. Iwasaki, N. Kurano & S. Miyachi, 1999. Development of vacuoles and vacuolar H+-ATPase activity under extremely high-CO2 conditions in Chlorococcum littorale cells. Plant Biol. 1: 68–75.

    Google Scholar 

  • Seckbach, J., A. F. Baker & P. M. Shugarman, 1970. Algae thrive under pure CO2. Nature 227: 744–745.

    Google Scholar 

  • Suzuki, E., Y. Shiraiwa & S. Miyachi, 1994. The cellular and molecular aspects of carbonic anhydrase in photosynthetic microorganisms. Progress in Phycological Research 10: 1–54.

    Google Scholar 

  • Takano, H., H. Takeyama, H. Nakamura, H. Sode, J. G. Burges, E. Manabe, E. Hirono & T. Matsunaga, 1992. CO2 removal by high-density culture of a marine cyanobacterium Synechococcus sp. using an improved photobioreactor employed light-diffusing optical fibers. Appl. Biochem. Bioeng. 34/35: 449–458.

    Google Scholar 

  • Zhang, K., N. Kurano & S. Miyachi, 1999. Outdoor culture of a cyanobacterium with a vertical flat-plate photobioreactor: effects on productivity of the reactor orientation, distance setting between the plates, and culture temperature. Appl. Microbiol. Biotechnol. 52: 781–786.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurano, N., Miyachi, S. Microalgal studies for the 21st Century. Hydrobiologia 512, 27–32 (2004). https://doi.org/10.1023/B:HYDR.0000020362.58480.ed

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000020362.58480.ed

Navigation