Skip to main content
Log in

Carbon flow dynamics in the pelagic community of the Sau Reservoir (Catalonia, NE Spain)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Changes in the pelagic community structure and activity along the longitudinal axis of the eutrophic Sau Reservoir (Catalonia, NE Spain) were studied between 1996 and 1999. Samples were taken from several transects from river to dam, measuring dissolved organic carbon (DOC), bacterial abundance and production, chlorophyll a concentration, heterotrophic nanoflagelate (HNF) and ciliate abundances and their grazing rates, and zooplankton density. The role of microbial and classical food chains (i.e., based directly on phytoplankon) were compared in the Sau Reservoir by analysing river-to-dam gradients in biomass and carbon and their temporal changes. The detritic metabolic pathway was more important near to the inflow, due to high allochthonous organic matter loads allowing the rapid development of the microbial food web. Protozoans (HNF and ciliates) consumed most of the bacterial production (i.e., >50%) in the reservoir. As opposed to the systems of lower trophic status ciliate carbon biomass and bacterivory contributions were larger than those of the HNF. We estimated species-specific ciliate growing rates on bacteria and distinguished several periods with high importance of distinct ciliate communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armengol, J., J. C. García, M. Comerma, M. Romero, J. Dolz, M. Roura, B.-H. Han, A. Vidal K. Šimek, 1999. Longitudinal processes in canyon type reservoirs: the case of Sau (N. E. Spain). In Tundisi, J. G. M. Straškraba (eds), Theoretical Reservoir Ecology and its Applications. International Institute of Ecology. Brazilian Academy of Sciences Backhuys Publishers, Leiden: 313–345.

    Google Scholar 

  • Bell, R. T., 1993. Estimating production of heterotrophic bacterioplankton via incorporation of tritiated thymidine. In Kemp, P. F., B. F. Sherr, E. B. Sherr J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Chapter 56. Lewis Publishers, London: 495–503.

    Google Scholar 

  • Berman, T., 1990. Microbial food-webs and nutrient cycling in lakes: changing perspectives. In Tilzer, M. M. C. Serruya (eds), Large Lakes. Ecological Structure and Function. Chapter 27. Springer, New York: 511–525.

    Google Scholar 

  • Bloem, J., F. M. Ellenbroek, M. B. Bär-Gilissen E. T. Cappenberg, 1989. Protozoan grazing and bacterial production in stratified Lake Vechten estimated with fluorescently labeled bacteria and by thymidine incorporation. Appl. environ. Microbiol. 55: 1787–1795.

    Google Scholar 

  • Børsheim, K. Y. G. Bratbak, 1987. Cell volume to carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36: 171–175.

    Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419–456.

    Google Scholar 

  • Comerma, M., J. C. García, J. Armengol, M, Romero K. Šimek, 2001. Planktonic food web structure along the Sau Reservoir (Spain) in Summer 1997. Int. Rev. Hydrobiol. 86: 195–209.

    Google Scholar 

  • Comerma, M., J. C. García, J. Armengol K. Šimek, in preparation. Changes in the seasonal epilimnetic microbial food web dynamics along a eutrophic reservoir.

  • Del Giorgio, P. A. J. M. Gasol, 1995. Biomass distribution in freshwater plankton communities. Am. Nat. 146: 135–152.

    Google Scholar 

  • Dumont, J. H., I. Van de Velde S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, perifyton and benthos of continental waters. Oecologia 19: 75–97.

    Google Scholar 

  • Gaedke, U., D. Straile C. Pahl-Wostl, 1995. Trophic structure and carbon flow dynamics in the pelagic community of a large lake. In Polis, G. A. K. O. Winemiller (eds), Food Webs. Integration of Patterns and Dynamics. Chapter 5. Chapman Hall, NY: 60– 71.

    Google Scholar 

  • Gasol, J. M., P. A. del Giorgio C. M. Duarte, 1997. Biomass distribution in marine planktonic communities. Limnol. Oceanogr. 42: 1353–1363.

    Google Scholar 

  • Gasol, J. M., M. Comerma, J. C. García, J. Armengol, E. O. Casamayor, P. Kojecká K. Šimek, 2002. A transplant experiment to identify the factors controlling bacterial abundance, activity, production, and community composition in a eutrophic canyon-shaped reservoir. Limnol. Oceanogr. 47: 62–77.

    Google Scholar 

  • Hart, D., L. Stone T. Berman, 2000. Seasonal dynamics of the Lake Kinneret food web: The importance of the microbial loop. Limnol. Oceanogr. 45: 350–361.

    Google Scholar 

  • Jansson, M., A.-K. Bergström, P. Blomqvist S. Drakare, 2000. Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81: 3250–3255.

    Google Scholar 

  • Jeffrey, S. W. Humphrey, G. F., 1975. New spectrophotometric equations for determining clorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167: 191–194.

    Google Scholar 

  • Kimmel, B. L., 1983. Size distribution of planktonic autotrophy and microheterotrophy: Implications for organic carbon flow in reservoir foodwebs. Arch. Hydrobiol. 97: 303–319.

    Google Scholar 

  • Kisand, V. P. Kingel, 2000. Dominance of ciliate grazing on bacteria during spring in a shallow eutrophic lake. Aquat. Microb. Ecol. 22: 135–142.

    Google Scholar 

  • Latja, R. Salonen, L., 1978. Carbon analysis for the determination of individual biomasses of planktonic animals. Verh. int. Ver. theor. angew. Limnol. 20: 2556–2560.

    Google Scholar 

  • McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. F. H. Rigler (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blakwell, Oxford: 228–265.

    Google Scholar 

  • Menden-Deuer, S. E. Lessard, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45: 569–579.

    Google Scholar 

  • Nixdorf, B. H. Arndt, 1993. Seasonal changes in the plankton dynamics of a eutrophic lake including the microbial web. Int. Rev. ges. Hydrobiol. 78: 403–410.

    Google Scholar 

  • Norland, S., 1993. The relationship between biomass and volume of bacteria. In Kemp, P.F., B. F. Sherr, E. B. Sherr J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Chapter 35. Lewis Publishers, London: 303–307.

    Google Scholar 

  • Peterson, B. J., 1978. Radiocarbon uptake: its relation to net particulate carbon production. Limnol. Oceanogr. 23: 179–184.

    Google Scholar 

  • Porter, K. G., 1996. Integrating the microbial loop and the classic food chain into a realistic planktonic food web. In Polis, G. A. K. O. Winemiller (eds), Food Webs. Integration of Patterns and Dinamics. Chapman Hall, NY: 51–59.

    Google Scholar 

  • Porter, K. G. Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Porter, K. G., M. L. Pace J. F. Battey, 1979. Ciliate protozoans as links in freshwater planktonic food chains. Nature 277: 563–565.

    Google Scholar 

  • Porter, K. G., E. B. Sherr, B. F. Sherr, M. Pace R. W. Sanders, 1985. Protozoa in planktonic food webs. J. Protozool. 32: 409– 415.

    Google Scholar 

  • Putt, M. D. K. Stoecker, 1989. An experimentally determined carbon: volume ratio for marine 'oligotrichous' ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097–1103.

    Google Scholar 

  • Riemann, B. K. Christoffersen, 1993. Microbial trophodynamics in temperate lakes. Mar. Microb. Food Webs 7: 69–100.

    Google Scholar 

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculations of plankton rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 71– 76.

    Google Scholar 

  • Sanders, R. W., K. G. Porter, S. J. Bennet A. E. DeBiase, 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol. Oceanogr. 34: 673–687.

    Google Scholar 

  • Servais, P., G. Billen M. Hascoët, 1987. Determination of the biodegradable fraction of dissolved organic matter in waters. Wat. Res. 21: 45–450.

    Google Scholar 

  • Sherr, E. B. Sherr, 1988. Role of microbes in pelagic food webs: A revised concept. Limnol. Oceanogr. 33: 1225–1227.

    Google Scholar 

  • Sherr, E. B. B. F. Sherr, 1993. Protistan grazing rates via uptake of fluorescently labeled prey. In Kemp, P. F., B. F. Sherr, E. B. Sherr J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Chapter 80. Lewis Publishers, London: 695–701.

    Google Scholar 

  • Šimek, K. V. Straškrabová, 1992. Bacterioplakton production and protozoan bacterivory in a mesotrophic reservoir. J. Plankton Res. 14: 773–787.

    Google Scholar 

  • Šimek, K., J. Bobková, M. Macek, J. Nedoma, R. Psenner, 1995. Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplnakton maximum: A study at the species and community level. Limnol. Oceanogr. 40: 1077–1090.

    Google Scholar 

  • Šimek, K., J. Armengol, M. Comerma, J. C. García, T. H. Chrzanowski, M. Macek, J. Nedoma V. Straškrabová, 1998. Characteristics of protistan control of bacterial production in three reservoirs of different trophy. Int. Rev. Hydrobiol. 83: 485–494.

    Google Scholar 

  • Šimek, K., J. Armengol, M. Comerma, J. C. García, T. H. Chrzanowski, P. Kojecká, M. Macek, J. Nedoma V. Straškrabová, 1999. Impacts of protistan grazing on bacterial dynamics and composition in reservoirs of different trophy. In Tundisi, J. G. M. Straškraba (eds), Theoretical Reservoir Ecology and its Applications. International Institute of Ecology. Brazilian Academy of Sciences Backhuys Publishers, Leiden: 267–282.

    Google Scholar 

  • Šimek, K., K. Jürgens, J. Nedoma, M. Comerma J. Armengol, 2000. Ecological role and bacterial grazing of Halteria spp.: small freshwater oligotrichs as dominant pelagic ciliate bacterivores. Aquat. Microb. Ecol. 22: 43–56.

    Google Scholar 

  • Šimek, K., J. Armengol, M. Comerma, J. C. García, P. Kojecka, J. Nedoma J. Hejzlar, 2001. Changes in the epilimnetic bacterial community composition, production, and protist-induced mortality along the longitudinal axis of a highly eutrophic reservoir. Microb. Ecol. 42: 359–371.

    PubMed  Google Scholar 

  • Sommaruga, R. R. D. Robarts, 1997. The significance of autotrophic and heterotrophic picoplankton in hypereutrophic ecosystems. FEMS Microbiol. Ecol. 24: 187–200.

    Google Scholar 

  • Weisse, T., 1991. The microbial food web and its sensitivity to eutrophication and contaminant enrichment: a cross-system overview. Int. Rev. ges. Hydrobiol. 76: 327–337.

    Google Scholar 

  • Weisse, T. H. Müller, 1990. Significance of heterotrophic nanoflagellates and ciliates in large lakes: evidence from Lake Constance. In Tilzer, M. M. C. Serruya (eds), Large Lakes. Ecological Structure and Function. Chapter 29. Springer, New York: 540–555.

    Google Scholar 

  • Weisse, T. J. G. Stockner, 1993. Eutrophication: the role of microbial food webs. In de Bernardi, R., R. Pagnotta, A. Pugnetti (eds), Strategies for Lake Ecosystems Beyond 2000. Memorie dell'Istituto Italiano di Idrobiologia 52: 133–150.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comerma, M., García, J., Romero, M. et al. Carbon flow dynamics in the pelagic community of the Sau Reservoir (Catalonia, NE Spain). Hydrobiologia 504, 87–98 (2003). https://doi.org/10.1023/B:HYDR.0000008511.45153.aa

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000008511.45153.aa

Navigation