Skip to main content
Log in

Steady state phytoplankton in a deep pre-alpine lake: species and pigments of epilimnetic versus metalimnetic assemblages

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The vertical distribution pattern of algal species, chlorophylls and specific carotenoids present in the dimictic pre-alpine Ammersee (Bavaria, Germany) are given for the year 2001. A detailed taxonomic list of the phytoplankton species is recorded, along with light micrographs and detailed descriptions of the flagellates. A deep chorophyll maximum, mainly built by Planktothrix rubescens, was common in this deep mesotrophic lake. The three most dominant species among 83 identified taxa alternated seasonally and reached significant biovolumes in both the epi- and the metalimnion (Planktothrix rubescens > Ceratium hirundinella > unicellular centric diatoms > Asterionella formosa > Fragilaria spp. > Anabaena lemmermannii > Phacotus lenticularis and less frequent dominant was Rhodomonas minuta). We define a steady state phytoplankton assemblage in Ammersee as a stable community in terms of species composition and standing crop. The stability of species composition was measured by Bray-Curtis similarity between monthly samples and indicate the change of individual biovolumes of species from month to month. The stability of standing crop was evaluated by the net change of total biovolume for the same time intervals. Focussing on steady state phytoplankton assemblages we compared three spatially heterogeneous environments for vertical niche separation within the top 12 m: the euphotic epilimnion (2 and 5 m), the euphotic metalimnion (7 m) and the metalimnion below the euphotic zone with dim-light less than 1% (10 and 12 m). The definition of a steady state assemblage on both ends hold true only for metalimnetic layers at dim-light levels below 1% in Ammersee. At this metalimnetic layer more than 80% similarity in phytoplankton composition between successive monthly samples was reached, associated with almost zero net changes of total biovolume only. The greater the contribution of the three most dominant taxa to biovolume, the higher were the Bray-Curtis similarities at metalimnetic depths below the euphotic zone. Zooplankton biomass had very little effect on species assemblages in the metalimnion, while parameters related to stratification (Schmidt stability) as well as those of trophy (TP, Chl) correlated with species changes. The similarity values between successive monthly samples from all the euphotic layers never reached more than 60% and were usually significantly lower, even if biovolume net changes were around zero. Both the high fluctuations of the ratio of photosynthetic versus photo-protective carotenoids (PSC:PPC) and the statistical significance of correlations between the change of species and environmental-biotic parameters separate the euphotic layer of the top 7 m as a homogenous community from deeper strata. At all sampling depths within this euphotic zone the increase of sunshine duration was associated with an increase of the carotenoid ratio PSC:PPC, but no relationship was found for the deeper layers. The change of species in the euphotic layer was not significantly related to thermal stability, TP or the dominance structure of phytoplankton, but linked with the zooplankton biomass and therefore seemed to be top-down controlled. From our observations, we can conclude that only during stratification and only in the metalimnion below the euphotic zone steady state assemblages can be expected in the deep mesotrophic Ammersee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adler, M., F. Gervais & U. Siedel, 2000. Phytoplankton species composition in the chemocline of mesotrophic lakes. Archiv für Hydrobiolog./Adv. Limnol. 55: 513–530.

    Google Scholar 

  • Adrian, R., A. Wickham & M. N. Butler, 2001. Trophic interactions between zooplankton and the microbial community in contrasting food webs: the epilimnion and deep chlorophyll maximum of a mesotrophic lake. Aquat. Microbial Ecol. 24: 83-97.

    Google Scholar 

  • American Public Health Association (APHA), 1992. Standard methods for examination of water and wastewater. 18th edition, American Public Health Association, Washington, DC.

    Google Scholar 

  • Arvola, L., A. Ojala, F. Barbosa & S. I. Heaney, 1991. Migration behaviour of three cryptophytes in relation to environmental gradients: an experimental approach. British Phycol. J. 26: 361–373.

    Google Scholar 

  • Bricaud, A., M. Babin, A. Morel and H. Claustre, 1995. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization. J. Geophys. Res. 100: 13321-13332.

    Google Scholar 

  • Bright, D. I. and A. E. Walsby, 2000. The daily integral of growth by Planktothrix rubescens calculated from growth rate in culture and irradiance in Lake Zürich. New Phytol. 146: 301–316.

    Google Scholar 

  • Descy, J.-P., H.W. Higgins, D. J. Mackey, J. P. Hurley & T. M. Frost, 2000. Pigment ratios and phytoplankton assessment in Northern Wisconsin Lakes. J. Phycol. 36: 274–286.

    Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2003. Steady state phytoplankton assemblages during thermal stratification in deep alpine lakes. Do they occur? Hydrobiologia 502 (Dev. Hydrobiol. 172): 65-72.

    Google Scholar 

  • Flaim, G., E. Rott, F. Corradini, G. Toller & B. Borghi, 2003. Long-term trends in species composition and diurnal migration of dinoflagellates in Lake Tovel (Trentino, Italy). Hydrobiologia 502 (Dev. Hydrobiol. 172): 357–366.

    Google Scholar 

  • Gervais, F., 1997a. Diel vertical migration of Cryptomonas and Chromatium in the deep chlorophyll maximum of a eutrophic lake. J. Plankton Res. 19: 533–550.

    Google Scholar 

  • Gervais, F., 1997b. Light-dependent growth, dark survival & glucose uptake by cryptophytes isolated from a freshwater chemocline. J. Phycol. 33: 18-25.

    Google Scholar 

  • Gervais, F., 1998. Ecology of cryptophytes coexisting near freshwater chemocline. Freshwat. Biol. 39: 61-78.

    Google Scholar 

  • Haffner, G. D. & R. Mc. Neely, 1989. Community structure in epilimnetic and metalimnetic phytoplankton assemblages. Hydrobiologia 182: 59-71.

    Google Scholar 

  • Heaney, S. I. & J. F. Talling, 1980. Dynamic aspects of dinoflagellate distribution patterns in a small productive lake. J. Ecol. 68: 75-94.

    Google Scholar 

  • Hixon, M. A., S. W. Pacala & S. A. Sandin, 2002. Population regulation: historical context and contemporary challenges of open vs. closed systems. Ecology 83: 1490-1508.

    Google Scholar 

  • Interlandi, S. J. & S. S. Kilham, 2001. Limiting recourses and the regulation of diversity in phytoplankton communities. Ecology 82: 1270-1282.

    Google Scholar 

  • Jones, R. I., 1991. Advantages of diurnal vertical migrations to phytoplankton in sharply stratified, humic forest lakes. Archiv für Hydrobiolog. 120: 257–266.

    Google Scholar 

  • Jones, R. I., 1993. Phytoplankton migration: patterns, processes and profits. Archiv für Hydrobiol. Beih. Ergebn. Limnol. 39: 67-77.

    Google Scholar 

  • Lampert, W., 1992. Zooplankton vertical migration: implications for phytoplankton-zooplankton interactions. Arch. Hydrobiol. Beih. Ergebn. Limnol. 35: 69-78.

    Google Scholar 

  • Lenhart, B., 1987. Limnologische Studien am Ammersee. Informationsberichte Bayerisches Landesamt für Wasserwirtschaft 2: 1–105.

    Google Scholar 

  • Lenhart, B., 2000. Langfristige Entwicklungen-Eutrophierung und Reoligotrophierung-am Ammersee. Münchner Beiträge zur zur Abwasser,-Fischrei-und Flussbiologie 47: 185–205.

    Google Scholar 

  • Lindholm, T., 1992. Ecological role of depth maxima of phytoplankton. Archiv für Hydrobiol. Beih. Ergebn. Limnol. 35: 33-45.

    Google Scholar 

  • Livingstone, D. M. & F. Schanz, 1994. The effects of deep-water siphoning on a small, shallow lake: a long-term case study. Archiv für Hydrobiolog. 123: 15-44.

    Google Scholar 

  • Meffert, M.-E., 1971. Cultivation and growth of two planktonic Oscillatoria species. Mitt. int. Ver. theor. angewand. Limnol. 19: 189–205.

    Google Scholar 

  • Mischke, U. & B. Nixdorf, 2003. Equilibrium phase conditions in shallow German lakes: How Cyanoprokaryota species establish a steady state phase in late summer. Hydrobiologia 502 (Dev. Hydrobiol. 172): 123–132.

    Google Scholar 

  • Moore, J. W., 1981. Seasonal abundance of Ceratium hirundinella (O. F.MÑLLER) SCHRANK in lakes of different trophy. Archiv für Hydrobiol. 92: 535–548.

    Google Scholar 

  • Morgan, K. C. & J. Kalff, 1979. Effect of light and temperature interactions on the growth of Cryptomonas erosa (Cryptphyceae). J. Phycol. 15: 127–134.

    Google Scholar 

  • Morscheid, H., 2002. Langzeitentwicklung des Phytoplanktons im Ammersee während der Oligotrophierung. PhThesis, Wien.

  • Morscheid, H. & C. Mayr, 2002. Supply and demand - The interplay of vertical distribution of whitefish (Coregonus lavaretus L.) and zooplankton and its consequence for seasonal succession and development of zooplankton. Archiv für Hydrobiol. / Adv. Limnol., Biol. Manage. of Coregonid Fishes 57: 411–421.

    Google Scholar 

  • Nixdorf, B. U. Mischke & J. Rücker, 2003. Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes - an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502 (Dev. Hydrobiol. 172): 111–121.

    Google Scholar 

  • Padisák, J., 1994. Identification of relevant time-scales in nonequilibrium community dynamics: conclusions from phytoplankton surveys. New Zealand J. Ecol. Forum 18: 169–176.

    Google Scholar 

  • Polishchuk, L. V., 1999. Contribution analysis of disturbancecaused changes in phytoplankton diversity. Ecology 80: 721- 725.

    Google Scholar 

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplankton., Cambridge University Press, Cambridge. 384 pp.

    Google Scholar 

  • Reynolds, C., 1992. Dynamics, selection and composition of phytoplankton in relation to vertical structure in lakes. Archiv für Hydrobiol. Beih. Ergebn. Limnol. 35: 13-31.

    Google Scholar 

  • Reynolds, C. S., 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249: 157–171.

    Google Scholar 

  • Reynolds, C. S., J. Padisák & U. Sommer, 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia 249: 183–188.

    Google Scholar 

  • Rott, E., 1983. Sind die Veränderungen im Phytoplanktonbild des Piburger Sees Auswirkungen der Tiefenwasserableitung? Archiv für Hydrobiologie / Algological Studies 67: 29-80.

    Google Scholar 

  • Rowan, K. S., 1989. Photosynthetic pigments of algae. Cambridge University Press. 334 pp.

  • Salmaso, N., 2003. Life strategies, dominance patterns and mechanisms promoting species coexistence in phytoplankton communities along complex environmental gradients. Hydrobiologia 502 (Dev. Hydrobiol. 172): 13-36.

    Google Scholar 

  • Scheffer, M., S. Reinaldi, J. Huisman & F. J. Weissing, 2003. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491: 9-18.

    Google Scholar 

  • Schmid, H., F. Bauer & H.B. Stich, 1998. Determination of algal biomass with HPLC pigment analysis from lakes of different trophic state in comparison to microscopically measured biomass. J. Plankton Res. 20: 1651-1661.

    Google Scholar 

  • Sommer, U., 1982. Vertical niche separation between two closely related planktonic flagellate species (Rhodomonas lens and Rhodomonas minuta v. nannoplanctica). J. Plankton Res. 4: 137–143.

    Google Scholar 

  • Sommer, U., 1983. Nutrient competition between phytoplankton species in multispecies chemostat experiments. Archiv für Hydrobiol. 96: 399–416.

    Google Scholar 

  • Sommer, U., 1985. Comparison between steady state and nonsteady state competition: experiments with natural phytoplankton. Limnol. Oceanogr. 30: 335–346.

    Google Scholar 

  • Sommer, U., 1988. Some relationships in phytoflagellate motility. Hydrobiologia 161: 125–131.

    Google Scholar 

  • Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson's heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1-7.

    Google Scholar 

  • Sommer, U., 1995. An experimental test of the intermediate disturbance hypothesis using cultures of marine phytoplankton. Limnol. Oceanogr. 40: 1271-1277.

    Google Scholar 

  • Stuart, V., S. Sathyendranath, T. Platt, H. Maass & B. D. Irwin, 1998. Pigments and species composition of natural phytoplankton populations: effect on the absorption spectra. J. Plankton Res. 20: 187–217.

    Google Scholar 

  • Teubner, K., A. Sarobe, M. R. Vadrucci & M. T. Dokulil, 2001. 14C photosynthesis and pigment pattern of phytoplankton as size related adaptation strategies in alpine lakes. Aquat. Sci. 63: 310–325.

    Google Scholar 

  • Teubner, K., 2003. Phytoplankton, pelagic community and nutrients in a deep oligotrophic alpine lake: Ratios as sensitive indicators of the use of P-resources (DRP:DOP:PP and TN:TP:SRSi). Water Res. 37: 1583-1592.

    PubMed  Google Scholar 

  • Tilman, D., 1982. Resource competition and community structure. Monographs in Population Biology 17., Princeton University Press. 296 pp.

  • Wetzel, R. G., 2001. Limnology: lake and river ecosystems., Academic Press, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo. 1006 pp.

    Google Scholar 

  • Wilhelm, C., I. Rudolph & W. Renner, 1991. A quantitative method based on HPLC-aided pigment analysis to monitor structure and dynamics of the phytoplankton assemblage - A study from Lake Meerfelder Maar (Eifel, Germany). Archiv für Hydrobiol. 123: 21-35.

    Google Scholar 

  • Wright, S. W., S. W. Jeffrey, R. F. C. Mantoura, C. A Llewellyn, T. Bjornland, D. Repela & N. Welschmeyer, 1991. Improved method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol. Progr. Ser. 77: 183–196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teubner, K., Tolotti, M., Greisberger, S. et al. Steady state phytoplankton in a deep pre-alpine lake: species and pigments of epilimnetic versus metalimnetic assemblages. Hydrobiologia 502, 49–64 (2003). https://doi.org/10.1023/B:HYDR.0000004269.54705.cb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000004269.54705.cb

Navigation