Skip to main content
Log in

Extra Force from an Extra Dimension: Comparison Between Brane Theory, Space-Time-Matter Theory, and Other Approaches

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We investigate the question of how an observer in 4D perceives the five-dimensional geodesic motion. We consider the interpretation of null and non-null bulk geodesics in the context of brane theory, space-time-matter theory (STM) and other non-compact approaches. We develop a “frame-invariant” formalism that allows the computation of the rest mass and its variation as observed in 4D. We find the appropriate expression for the four-acceleration and thus obtain the extra force observed in 4D. Our formulae extend and generalize all previous results in the literature. An important result here is that the extra force in brane-world models with Z 2-symmetry is continuous and well defined across the brane. This is because the momentum component along the extra dimension is discontinuous across the brane, which effectively compensates the discontinuity of the extrinsic curvature. We show that brane theory and STM produce identical interpretation of the bulk geodesic motion. This holds for null and non-null bulk geodesics. Thus, experiments with test particles are unable to distinguish whether our universe is described by the brane world scenario or by STM. However, they do discriminate between the brane/STM scenario and other non-compact approaches. Among them the canonical and embedding approaches, which we examine in detail here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaluza, T. (1921). Sitz.-ber. Preuss. Akad. Wiss. 33, 966.

    Google Scholar 

  2. Klein, O. (1926). Z. Phys. 37, 895.

    Google Scholar 

  3. Collins, P., Martin, A., and Squires, E. (1989). Particle Physics and Cosmology, Chapter 13, Wiley, New York.

    Google Scholar 

  4. Arkani-HamVol., N., Dimipoulos, S., and Dvali, G. (1998). Phys. Lett. B Vol. 429, 263(hep-ph/9803315).

    Google Scholar 

  5. Arkani-HamVol., N., Dimipoulos, S., and Dvali, G. (1999). Phys. Rev. D 59, 086004(hep-ph/9807344).

    Google Scholar 

  6. Antoniadis, I., Arkani-HamVol., N., Dimipoulos, S., and Dvali, G. (1998). Phys. Lett. B 436, 257(hep-ph/9804398).

    Google Scholar 

  7. Randall, L. and Sundrum, R. (1998). Mod. Phys. Lett. A 13, 2807(hep-ph/9905221).

    Google Scholar 

  8. Randall, L. and Sundrum, R. (1999). Phys. Rev. Lett. 83, 4690(hp-th/9906064).

    Google Scholar 

  9. Ponce de Leon, J. (1988). Gen. Rel. Grav. 20, 539.

    Google Scholar 

  10. Wesson, P. S. and Ponce de Leon, J. (1992). J. Math. Phys. bf 33, 3883.

    Google Scholar 

  11. Ponce de Leon, L. and Wesson, P. S. (1993). J. Math. Phys. 34, 4080.

    Google Scholar 

  12. Wesson, P. S. (1999). Space-Time-Matter, Chapter 12, World Scientific, Singapore.

    Google Scholar 

  13. Ponce de Leon, J. (2002). Int. J. Mod. Phys. D 11, 1355(gr-qc/0105120).

    Google Scholar 

  14. Campbell, J. E. (1926). A Course of Differential Goemetry, Clarendon, Oxford.

    Google Scholar 

  15. Rippl, S., Romero, C., and Tavakol, R. (1995). Class. Quant. Grav. 12, 2411(gr-qc/9511016).

    Google Scholar 

  16. Romero, C., Tavakol, R., and Zalaletdinov, R. (1996). Gen. Rel. Grav. 28, 365.

    Google Scholar 

  17. Lidsey, J. E., Romero, C., Tavakol, R., and Rippl, S. (1997). Class. Quant. Grav. 14, 865(gr-qc/9907040).

    Google Scholar 

  18. Mashhoon, B., Wesson, P. S., and Liu, H. (1998). Gen. Rel. Grav. 30, 555.

    Google Scholar 

  19. Wesson, P. S., Mashhoon, B., Liu, H., and Sajko, W. N. (1999). Phys. Lett. B 456, 34.

    Google Scholar 

  20. Youm, D. (2000). Phys. Rev. D 62, 084002(hep-th/0004144).

    Google Scholar 

  21. Youm, D. (2001). Mod. Phys. Lett. A 16, 2371(hep-th/0110013).

    Google Scholar 

  22. Ponce de Leon, J. (2001). Phys. Lett. B 523, 311(gr-qc/0110063).

    Google Scholar 

  23. Seahra, S. S. (2002). Phys. Rev. D 65, 124004(gr-qc/0204032).

    Google Scholar 

  24. Seahra, S. S. and Wesson, P. S. (2001). Gen. Rel. Grav. 33, 1731(gr-qc/0105041).

    Google Scholar 

  25. Mashhoon, B., Liu, H., and Wesson, P. S. (1994). Phys. Lett. B 331, 305.

    Google Scholar 

  26. Liu, H. and Mashhoon, B. (2000). Phys. Lett. A 272, 26(gr-qc/0005079).

    Google Scholar 

  27. Billyard, A. P. and Sajko, W. N. (2001). Gen. Rel. Grav. 33, 1929(gr-qc/0105074).

    Google Scholar 

  28. Ponce de Leon, J. (2003). Int. J. Mod. Phys. D 12, 757(gr-qc/0209013).

    Google Scholar 

  29. Dahia, F., Monte, E. M., and Romero, C. (2003). Mod. Phys. Lett. A 18, 1773(gr-qc/0303044).

    Google Scholar 

  30. Ponce de Leon, J. (2003). Class. Quant. Grav. 20, 5321(gr-qc/0305041).

    Google Scholar 

  31. Ponce de Leon, J. (2001). Mod. Phys. Lett. A 16, 2291(gr-qc/0111011).

    Google Scholar 

  32. Landau, L. and Lifshitz, E. (1975). The Classical Theory of Fields, 4th Vol. edition, Chapters 10 and 12, Pergamon, New York.

    Google Scholar 

  33. Ponce de Leon, J. (2002). Grav. Cosmol. 8, 272(gr-qc/0104008).

    Google Scholar 

  34. Ponce de Leon, J. (2002). Mod. Phys. Lett. A 17, 2425(gr-qc/0207001).

    Google Scholar 

  35. Shiromizu, T., MaVol., K.-I., and Sasaki, M. (2000). Phys. Rev. D 62, 02412(gr-qc/9910076).

    Google Scholar 

  36. Maartens, R. (2000). Phys. Rev. D 62, 084023(hep-th/0004166).

    Google Scholar 

  37. Chamblin, A., Hawking, S. W., Reall, H. S. (2000). Phys. Rev. D 61, 065007(hep-th/9909205).

    Google Scholar 

  38. Chamblin, A. (2001). Class. Quant. Grav. 18, L-17(hep-th/0011128).

    Google Scholar 

  39. Bruni, M., Germani, C., and Maartens, R. (2001). Phys. Rev. Lett. 87, 23130(gr-qc/0108013).

    Google Scholar 

  40. Maartens, R. (2001). (gr-qc/0101059).

  41. Germani, C. and Maartens, R. (2001). Phys. Rev. D 64, 124010(hep-th/0107011).

    Google Scholar 

  42. Dadhich, N. and Gosh, S. G. (2001). Phys. Lett. B 518, 1(hep-th/0101019).

    Google Scholar 

  43. Govender, M. and Dadhich, N. (2002). Phys. Lett. B 538, 233(hep-th/0109086).

    Google Scholar 

  44. Deruelle, N. and Katz, J. (2002). Phys. Rev. D 64, 083515(gr-qc/0104007).

    Google Scholar 

  45. Davis, A. C., Vernon, I., Davis, S. C., and Perkins, W. B. (2001). Phys. Lett. B 504, 254(hep-ph/0008132).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Leon, J.P. Extra Force from an Extra Dimension: Comparison Between Brane Theory, Space-Time-Matter Theory, and Other Approaches. General Relativity and Gravitation 36, 1335–1360 (2004). https://doi.org/10.1023/B:GERG.0000022391.57597.3b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GERG.0000022391.57597.3b

Navigation