Functional Analysis and Its Applications

, Volume 38, Issue 1, pp 14–27 | Cite as

Three-Page Embeddings of Singular Knots

  • V. A. Kurlin
  • V. V. Vershinin


A semigroup with 15 generators and 84 relations is constructed. The center of the semigroup is in a one-to-one correspondence with the set of all isotopy classes of nonoriented singular knots (links with finitely many double intersections in general position) in ℝ3.

isotopy classification singular knot three-page embedding universal semigroup knotted graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Baez, “Link Invariants of Finite Type and Perturbation Theory,” Lett. Math. Phys., 26, 43–51 (1992).Google Scholar
  2. 2.
    J. S. Birman, “New points of view in knot theory,” Bull. Amer. Math. Soc., 28, No. 2, 253–387 (1993).Google Scholar
  3. 3.
    J. S. Birman and W. W. Menasco, “Special positions for essential tori in link complements,” Topology, 33, No. 3, 525–556 (1994).Google Scholar
  4. 4.
    H. Brunn, “Ñber verknotete Kurven,” In: Verhandlungen des ersten Internationalen Mathematiker-Kongresses (Zurich 1897), Leipzig, 1898, pp. 256–259.Google Scholar
  5. 5.
    P. R. Cromwell, “Embedding knots and links in an open book. I. Basic properties,” Topology Appl., 64, No. 1, 37–58 (1995).Google Scholar
  6. 6.
    P. R. Cromwell, “Arc presentations of knots and links,” In: Knot Theory. Proc. Conference Warsaw, 1995 (V. F. R. Jones et. al., eds.), Banach Center Publ., 42, Warsaw, 1998, pp. 57–64.Google Scholar
  7. 7.
    P. R. Cromwell and I. J. Nutt, “Embedding knots and links in an open book. II. Bounds on arc index,” Math. Proc. Cambridge Philos. Soc., 119, No. 2, 309–319 (1996).Google Scholar
  8. 8.
    O. T. Dasbach and B. Gemein, “A faithful representation of the singular braid monoid on three strands,” In: Knots in Hellas '98 (Delphi) (Pro c. of the International Conference on Knot Theory and Its Ramifications), Ser. Knots Everything, 24, World Sci. Publishing, River Edge, NJ, 2000, pp. 48–58.Google Scholar
  9. 9.
    I. A. Dynnikov, “Three-page approach to knot theory. Encoding and local moves,” Funkts. Anal. Prilozhen., 33, No. 4, 25–37 (1999); English transl. Funct. Anal. Appl., 33, No. 4, 260–269 (1999).Google Scholar
  10. 10.
    I. A. Dynnikov, “Three-page approach to knot theory. Universal semigroup,” Funkts. Anal. Prilozhen., 34, No. 1, 29–40 (2000); English transl. Funct. Anal. Appl., 34, No. 1, 24–32 (2000).Google Scholar
  11. 11.
    I. A. Dynnikov, “Finitely presented groups and semigroups in knot theory,” Trudy Mat. Inst. Steklov, 231, 231–248 (2000); English transl. in Proc. Steklov Inst. Math., No. 4 (231), 220–237 (2000).Google Scholar
  12. 12.
    R. Fenn, E. Keyman, and C. Rourke, “The singular braid monoid embeds in a group,” J. Knot Theory Ramifications, 7, No. 7, 881–892 (1998).Google Scholar
  13. 13.
    B. Gemein, “Singular braids and Markov's theorem,” J. Knot Theory Ramifications, 6, No. 4, 441–454 (1997).Google Scholar
  14. 14.
    B. Gemein, “Representations of the singular braid monoid and group invariants of singular knots,” Topology Applications, 114, No. 2, 117–140 (2001).Google Scholar
  15. 15.
    D. Jonish and K. C. Millett, “Isotopy invariants of graphs,” Trans. Amer. Math. Soc., 327, No. 2, 655–702 (1991).Google Scholar
  16. 16.
    L. Kauffman, “Invariants of graphs in three-space,” Trans. Amer. Math. Soc., 311, No. 2, 697–710 (1989).Google Scholar
  17. 17.
    L. Kauffman and P. Vogel, “Link polynomials and a graphical calculus,” J. Knot Theory Ramifications, 1, No. 1, 59–104 (1992).Google Scholar
  18. 18.
    V. A. Kurlin, “Three-page Dynnikov diagrams of linked 3-valent graphs,” Funkts. Anal. Prilozhen., 35, No. 3, 84–88 (2001); English transl. Funct. Anal. Appl.,, 35, No. 3, 230–233 (2001).Google Scholar
  19. 19.
    H. R. Morton and E. Beltrami, “Arc index and the Kauffman polynomial,” Math. Proc. Cambridge Philos. Soc., 123, 41–48 (1998).Google Scholar
  20. 20.
    T. Stanford, “Finite-type invariants of knots, links, and graphs,” Topology, 35, No. 4, 1027–1050 (1996).Google Scholar
  21. 21.
    V. G. Turaev, “Operator invariants of tangles and R-matrices,” Izv. AN SSSR, Ser. Mat., 53, No. 5, 1073–1107 (1989).Google Scholar
  22. 22.
    V. V. Vershinin, “On homological properties of singular braids,” Trans. Amer. Math. Soc., 350, No. 6, 2431–2455 (1998).Google Scholar
  23. 23.
    V. V. Vershinin, “Braid groups and loop spaces,” Usp. Mat. Nauk, 54, No. 2, 3–84 (1999)Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • V. A. Kurlin
    • 1
  • V. V. Vershinin
    • 2
  1. 1.Department of Mathematics and MechanicsMoscow State UniversityRussia
  2. 2.Département des Sciences Mathématiques; Sobolev Institute of MathematicsUniversité Montpellier IINovosibirskRussia

Personalised recommendations