Environmental Biology of Fishes

, Volume 69, Issue 1–4, pp 51–62 | Cite as

Smaller Effective Population Sizes Evidenced by Loss of Microsatellite Alleles in Tributary-Spawning Populations of Sockeye Salmon from the Kvichak River, Alaska drainage

  • Christopher Habicht
  • Jeffrey B. Olsen
  • Lowell Fair
  • James E. Seeb


We tested signals of historical reductions in effective population size within populations of sockeye salmon Oncorhynchus nerka returning to Bristol Bay, Alaska, to examine the roles that ecotype, migration obstacles, and drainage might play in the highly variable production of the Kvichak River drainage. We collected data for eight microsatellite loci from ∼100 fish at each of 16 locations within the Kvichak River drainage and five locations within the more productively stable Naknek River drainage. Pair-wise exact tests were used to group similar collections within ecotype, within drainage, and above and below migration obstacles. After grouping, collections represented independent populations for further analyses. We examined the number of alleles per locus, mean ratio of the number of alleles to the range in allele size, heterozygosity excess, and gametic disequilibrium as measures of reduction-in-population-size events. Number of alleles per locus revealed the largest number of significant differences. Tributary populations showed a stronger signal consistent with reduced effective population size than did beach populations within the Kvichak River drainage. Kvichak River drainage populations showed a stronger signal consistent with reduced effective population size than did the Naknek River drainage populations. Populations above migration obstacles showed signals consistent with reduction in historical population sizes in multiple measures indicating some of these reductions may be severe enough to qualify as demographic bottlenecks.

bottleneck Naknek River Bristol Bay Alaska Oncorhynchus nerka commercial fishery ecotype heterozygosity excess gametic disequilibrium straying migration obstacles beach spawners 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allendorf, F.W. 1986. Genetic drift and the loss of alleles versus heterozygosity. Zool. Biol. 5: 181–190.Google Scholar
  2. Allendorf, F.W. & L.W. Seeb. 2000. Concordance of genetic divergence among sockeye salmon populations at allozyme, nuclear DNA, and mitochondrial DNA markers. Evolution 54: 640–651.Google Scholar
  3. Bentzen, P., J.B. Olsen, J.E. McLean, T.R. Seamons & T.P. Quinn. 2001. Kinship analysis of Pacific salmon: Insights into mating, homing, and timing of reproduction. J. Hered. 92: 127–136.CrossRefGoogle Scholar
  4. Blair, G.R., D.E. Rogers & T.P. Quinn. 1993. Variation in life history characteristics and morphology of sockeye salmon in the Kvichak River system, Bristol Bay, Alaska. Trans. Am. Fish. Soc. 122: 550–559.CrossRefGoogle Scholar
  5. Chakraoborty, R. & O. Leimar. 1987. Genetic variation within a subdivided population. pp. 89–120. In: N. Ryman & R. Utter (ed.) Population Genetics and Fishery Management, University of Washington Press, Seattle.Google Scholar
  6. Cornuet, J.M. & G. Luikart. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001–2014.Google Scholar
  7. Forester, R.E. 1968. The sockeye salmon, Oncorhynchus nerka. Fish. Res. Board Can. Bull. 162: 422 pp.Google Scholar
  8. Frankham, R. 1995. Effective population size/adult population size ratios in wildlife: A review. Genet. Res. 66: 95–107.Google Scholar
  9. Garza, J.C. & E.G. Williamson. 2001. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10: 305–318.CrossRefGoogle Scholar
  10. Geiger, H.J., W.W. Smoker, L.A. Zhivotovsky & A.J. Gharrett. 1997. Variability of family size and marine survival in pink salmon (Oncorhynchus gorbuscha) has implications for conservation biology and human use. Can. J. Fish. Aquat. Sci. 54: 2684–2690.CrossRefGoogle Scholar
  11. Goudet, J., M. Raymond, T. de Meeus & F. Rousset. 1996. Testing differentiation in diploid populations. Genetics 144: 1933–1940.Google Scholar
  12. Heath, D.D., C. Busch, J. Kelly & D.Y. Atagi. 2002. Temporal change in genetic structure and effective population size in steelhead trout (Oncorhynchus mykiss). Mol. Ecol. 11: 197–214.CrossRefGoogle Scholar
  13. Hendry, A.P., F.E. Leonetti & T.P. Quinn. 1995. Spatial and temporal isolating mechanisms-the formation of discrete breeding aggregations of sockeye salmon (Oncorhynchus nerka). Can. J. Zool. 73: 339–352.Google Scholar
  14. Leberg, P.L. 2002. Estimating allelic richness: Effects of sample size and bottlenecks. Mol. Ecol. 11: 2445–2449.CrossRefGoogle Scholar
  15. Leonetti, F.E. 1997. Estimation of surface and intragravel water flow at sockeye salmon spawning beaches in Iliamna Lake, Alaska. N. Am. J. Fish. Manag. 17: 194–201.Google Scholar
  16. Luikart, G., F.W. Allendorf, J.-M. Cornuet & W.B. Sherwin. 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89: 238–247.CrossRefGoogle Scholar
  17. Nei, M., T. Maruyama & R. Chakraborty. 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1–10.Google Scholar
  18. Olsen, J.B., S.L.Wilson, E.J. Kretschmer, K.C. Jones & J.E. Seeb. 2000. Characterization of 14 tetranucleotide microsatellite loci derived from sockeye salmon. Mol. Ecol. 9: 2185–2287.Google Scholar
  19. Olsen, J.B., C. Habicht & J.E. Seeb. 2004. Moderately and highly polymorphic microsatellites provide discordant estimates of population divergence in sockeye salmo, Oncorhynchus nerka. Environ. Biol. Fish. 69: 261–273.CrossRefGoogle Scholar
  20. Pimm, S.L., J.L. Gittleman & G.F. McCracken. 1989. Plausible alternatives to bottlenecks to explain reduced genetic diversity. Trends Ecol. Evol. 4: 176–178.CrossRefGoogle Scholar
  21. Quinn, T.P. & M.T. Kinnison. 1999. Size-selective and sexselective predation by brown bears on sockeye salmon. Oecologia 121: 273–282.CrossRefGoogle Scholar
  22. Raymond, M. & F. Rousset. 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86: 248–249.Google Scholar
  23. Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution 4: 223–225.Google Scholar
  24. Rousset, F. & M. Raymond. 1995. Testing heterozygote excess and deficiency. Genetics 140: 1413–1419.Google Scholar
  25. Seeb, L.W., C. Habicht, W.D. Templin, K.E. Tarbox, R.Z. Davis, L.K. Brannian & J.E. Seeb. 2000. Genetic diversity of sockeye salmon of Cook Inlet, Alaska, and its application to management of populations affected by the Exxon Valdez oil spill. Trans. Am. Fish. Soc. 129: 1223–1249.CrossRefGoogle Scholar
  26. Selifonov, M.M. 1987. Influence of environment on the abundance of sockeye salmon (Oncorhynchus nerka) from the Ozernaya and Kamchatka Rivers. pp. 125–128. In: H.D. Smith, L. Margolis & C.C. Wood (ed.) Sockeye Salmon (Oncorhynchus nerka) Population Biology and Future Management, Can. Spec. Publ. Fish. Aquat. Sci. 96.Google Scholar
  27. Smouse, P.E. & J.V. Neel. 1977. Multivariate analysis of gametic disequilibrium in the Yanomama. Genetics 85: 733–752.Google Scholar
  28. Spencer, C.C., J.E. Neigel & P.L. Leberg. 2000. Experimental evaluation of the usefulness of microsatelliteDNAfor detecting demographic bottlenecks. Mol. Ecol. 9: 1517–1528.Google Scholar
  29. Spong, G. & L. Hellborg. 2002. A near-extinction in lynx: Do microsatellite data tell the tale? Conservation Ecology 6: 15 [online] URL: http://www.consecol.org/vol6/iss1/art15.Google Scholar
  30. Waldick, R.C., S. Kraus, M. Brown & B.N. White. 2002. Evaluating the effects of historic bottleneck events: An assessment of microsatellite variability in the endangered, North Atlantic right whale. Mol. Ecol. 11: 2241–2249.CrossRefGoogle Scholar
  31. Waples, R.S. 1990. Conservation genetics of Pacific salmon. II. Effective population size and the rate of loss of genetic variability. J. Hered. 81: 267–276.Google Scholar
  32. Waples, R.S. & P.E. Smouse. 1990. Gametic disequilibrium analysis as a means of identifying mixtures of salmon populations. Am. Fish. Soc. Symp. 7: 439–458.Google Scholar
  33. Withler, R.E., K.D. Le, R.J. Nelson, K.M. Miller & T.D. Beacham. 2000. Intact genetic structure and high levels of genetic diversity in bottlenecked sockeye salmon (Oncorhynchus nerka) populations of the Fraser River, British Columbia, Canada. Can. J. Fish. Aquat. Sci. 57: 1985–1998.CrossRefGoogle Scholar
  34. Wood, C.C. 1995. Life history variation and population structure in sockeye salmon. Am. Fish. Soc. Symp. 17: 195–216.Google Scholar
  35. Wright, S. 1978. Evolution and the Genetics of Populations. Volume 4: Variability Within and Among Natural Populations, The University of Chicago Press, Ltd, London.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Christopher Habicht
    • 1
  • Jeffrey B. Olsen
    • 1
    • 2
  • Lowell Fair
    • 1
  • James E. Seeb
    • 1
  1. 1.Commercial Fisheries DivisionAlaska Department of Fish and GameAnchorageU.S.A.
  2. 2.U.S. Fish and Wildlife ServiceAnchorageU.S.A.

Personalised recommendations