Skip to main content
Log in

Declining Temporal Effectiveness of Carbon Sequestration: Implications for Compliance with the United National Framework Convention on Climate Change

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Carbon sequestration is increasingly being promoted as a potential response to the risks of unrestrained emissions of CO2, either in place of or as a complement to reductions in the use of fossil fuels. However, the potential role of carbon sequestration as an (at-least partial) substitute for reductions in fossil fuel use can be properly evaluated only in the context of a long-term acceptable limit (or range of limits) to the increase in atmospheric CO2 concentration, taking into account the response of the entire carbon cycle to artificial sequestration. Under highly stringent emission-reduction scenarios for non-CO2 greenhouse gases, 450 ppmv CO2 is the equivalent, in terms of radiative forcing of climate,to a doubling of the pre-industrial concentration of CO2. It is argued in this paper that compliance with the United Nations Framework Convention on Climate Change (henceforth, the UNFCCC) implies that atmospheric CO2 concentration should be limited, or quickly returned to, a concentration somewhere below 450 ppmv. A quasi-one-dimensional coupled climate-carbon cycle model is used to assess the response of the carbon cycle to idealized carbon sequestration scenarios. The impact on atmospheric CO2 concentration of sequestering a given amount of CO2 that would otherwise be emitted to the atmosphere, either in deep geological formations or in the deep ocean, rapidly decreases over time. This occurs as a result of a reduction in the rate of absorption of atmospheric CO2 by the natural carbon sinks (the terrestrial biosphere and oceans) in response to the slower buildup of atmospheric CO2 resulting from carbon sequestration. For 100 years of continuous carbon sequestration, the sequestration fraction (defined as the reduction in atmospheric CO2 divided by the cumulative sequestration) decreases to 14% 1000 years after the beginning of sequestration in geological formations with no leakage, and to 6% 1000 years after the beginning of sequestration in the deep oceans. The difference (8% of cumulative sequestration) is due to an eflux from the ocean to the atmosphere of some of the carbon injected into the deep ocean.The coupled climate-carbon cycle model is also used to assess the amount of sequestration needed to limit or return the atmospheric CO2 concentration to 350–400 ppmv after phasing out all use of fossil fuels by no later than 2100. Under such circumstances, sequestration of 1–2 Gt C/yr by the latter part of this century could limit the peak CO2 concentration to 420–460 ppmv, depending on how rapidly use of fossilfuels is terminated and the strength of positive climate-carbon cycle feedbacks. To draw down the atmospheric CO2 concentration requires creating negative emissions through sequestration of CO2 released as a byproduct of the production of gaseous fuels from biomass primary energy. Even if fossil fuel emissions fall to zero by 2100, it will be difficult to create a large enough negative emission using biomass energy to return atmospheric CO2 to 350 ppmv within 100 years of its peak. However, building up soil carbon could help in returning CO2 to 350 ppmv within 100 years of its peak. In any case, a 100-year period of climate corresponding to the equivalent of a doubled-CO2 concentration would occur before temperatures decreased. Nevertheless, returning the atmospheric CO2concentration to 350 ppmv would reduce longterm sea level rise due to thermal expansion and might be sufficient to prevent the irreversible total melting of the Greenland ice sheet, collapse of the West Antarctic ice sheet, and abrupt changes in ocean circulation that might otherwise occur given a prolonged doubled-CO2 climate. Recovery of coral reef ecosystems, if not already driven to extinction, could begin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, E. E., Caulfield, A. J., Herzog, H. J., and Auerbach, D. I.: 1997, 'Impacts of Reduced pH from Ocean CO2 Disposal: Sensitivity of Zooplankton Mortality to Model Parameters', Waste Management 17, 375–380.

    Google Scholar 

  • Aggarwal, P. K. and Mall, R. K.: 2002, 'Climate Change and Rice Yields in Diverse Agro-Environments of India. II. Effect of Uncertainties in Scenarios and Crop Models on Impact Assessment', Clim. Change 52, 331–343.

    Google Scholar 

  • Andronova, N. G. and Schlesinger, M. E.: 2001, 'Objective Estimation of the Probability Density Function for Climate Sensitivity', J. Geophys. Res. 106, 22605–22611.

    Google Scholar 

  • Arnell, N. W., Cannell, M. G. R., Hulme, M., Kovats, R. S., Mitchell, J. F. B., Nicholls, R. J., Parry, M. L., Livermore, M. T. J., and White, A.: 2002, 'The Consequences of CO2 Stabilization for the Impacts of Climate Change', Clim. Change 53, 413–446.

    Google Scholar 

  • Auerbach, D. I., Caulfield, J. A., Adams, E. E., and Herzog, H. J.: 1997, 'Impacts of Ocean CO2 Disposal on Marine Life: 1. A Toxicological Assessment Integrating Constant-Concentration Laboratory Assay Data with Variable-Concentration Field Exposure', Environ. Model. Assess. 2, 333–343.

    Google Scholar 

  • Azar, C. and Rodhe, H.: 1997, 'Targets for Stabilization of Atmospheric CO2', Science 276, 1818–1819.

    Google Scholar 

  • Byrer, C. W. and Guthrie, H. D.: 1999, 'Coal Deposits: Potential Geological Sink for Sequestering Carbon Dioxide Emissions from Power Plants', in Riemer, P., Eliasson, B., and Wokaun, A. (eds.), Greenhouse Gas Control Technologies, Elsevier Science, New York, pp. 181–187.

    Google Scholar 

  • Caldeira, K., Herzog, H. J., and Wickett, M. E.: 2001, 'Predicting and Evaluating the Effectiveness of Ocean Carbon Sequestration by Direct Injection', presented at the First National Conference on Carbon Sequestration, Washington, D.C., 14-17 May 2001.

  • Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: 2000, 'Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model', Nature 408, 184–187.

    Google Scholar 

  • Daly, H. E.: 1996, Beyond Growth, Beacon Press, Boston, 253 pp.

    Google Scholar 

  • Daly, H. E. and Cobb, J. B.: 1989, For the Common Good: Redirecting the Economy Toward Community, the Environment, and a Sustainable Future, Beacon Press, Boston, 482 pp.

    Google Scholar 

  • Darwin, R. and Kennedy, D.: 2000, 'Economic Effects of CO2 Fertilization of Crops: Transforming Changes in Yield into Changes in Supply', Environ. Model. Assess. 5, 157–168.

    Google Scholar 

  • David, J. and Herzog, H.: 2000, 'The Cost of Carbon Capture', in Fifth International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, 13-16 August 2000.

  • Dennis, C.: 2002, 'Reef under Threat from “Bleaching” outbreak', Nature 415, 947.

    Google Scholar 

  • Drange, H., Alendal, G., and Johannessen, O. M.: 2001, 'Ocean Release of Fossil Fuel CO2: A Case Study', Geophys. Res. Lett. 22637–2640.

    Google Scholar 

  • Edmonds, J. and Reilly, J.: 1983, 'A Long-Term Global Energy-Economic Model of Carbon Dioxide Release from Fossil Fuel Use', Energy Economics 5, 74–88.

    Google Scholar 

  • Forest, C. E., Stone, P. H., Sokolov, A. P., Allen, M. R., and Webster, M. D.: 2002, 'Quantifying Uncertainties in Climate System Properties with the Use of Recent Climate Observations', Science 295, 113–117.

    Google Scholar 

  • Gitay, H. et al.: 2001, 'Ecosystems and their Goods and Services', in McCarthy, J. J., Canziani, O. S., Leary, N.A., Dokken, D. J., and White, K. S. (eds.), Climate Change 2001: Impacts, Adaptation, and Vulnerability, Cambridge University Press, Cambridge, pp. 235–342.

    Google Scholar 

  • Harvey, L. D. D.: 1989, 'Managing Atmospheric CO2', Clim. Change 15, 343–381.

    Google Scholar 

  • Harvey, L. D. D.: 2000, Global Warming: The Hard Science, Prentice Hall, Harlow, U.K., 336 pp.

    Google Scholar 

  • Harvey, L. D. D.: 2002, 'A Quasi-One-Dimensional Coupled Climate-Carbon Cycle Model. Part II: The Carbon Cycle Component', J. Geophys. Res.-Oceans 106, 22355–22372, 2001.

    Google Scholar 

  • Harvey, L. D. D.: 2003, 'Impact of Deep-Ocean Carbon Sequestration on Atmospheric CO2 and on Surface-Water Chemistry', Geophys. Res. Lett. 30 (5), doi:10.1029/2002GL016224.

    Google Scholar 

  • Harvey, L. D. D.: 2004, 'Climatic Change Drivers', in Lovejoy, T. and Hannah, L. (eds.), Climate Change and Biodiversity, Yale University Press, accepted.

  • Harvey, L. D. D.: 2005, Energy and the New Reality: Facing up to Climatic Change, Island Press, Washington, in preparation.

    Google Scholar 

  • Harvey, L. D. D. and Huang, Z.: 2001, 'A Quasi-One-Dimensional Coupled Climate-Carbon Cycle Model, Part 1: Description and Behavior of the Climate Component', J. Geophys. Res.-Oceans 106, 22339–22353.

    Google Scholar 

  • Harvey, L. D. D. and Kaufmann, R. K.: 2002, 'Simultaneously Constraining Climate Sensitivity and Aerosol Radiative Forcing', J. Climate 15, 2837–2861.

    Google Scholar 

  • Haugan, P. M. and Drange, H.: 1996, 'Effects of CO2 on the Ocean Environment', Energy Convers. Mgmt 37, 1019–1022.

    Google Scholar 

  • Haugen, H. S. and Eide, L. I.: 1996, 'CO2 Capture and disposal: The Realism of Large-Scale Scenarios', Energy Convers. Mgmt 37, 1061–1066.

    Google Scholar 

  • Herzog, H. J.: 2001, 'What Future for Carbon Capture and Sequestration?', Environmental Science and Technology 35, 148–153.

    Google Scholar 

  • Hoegh-Guldberg, O.: 1999, 'Climate Change, Coral Bleaching and the Future of the World's Coral Reefs', Mar. Freshwater Res. 50, 839–866.

    Google Scholar 

  • Hoffert, M. I. et al.: 1998, 'Energy Implications of Future Stabilization of Atmospheric CO2 Content', Nature 395, 881–884.

    Google Scholar 

  • Holloway, S.: 2001, 'Storage of Fossil Fuel-Derived Carbon Dioxide beneath the Surface of the Earth', Annu. Rev. Energy Environ. 26, 145–166.

    Google Scholar 

  • Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.): 2001, Climate Change 2001: The Scientific Basis, Appendix II, SRES Tables, Cambridge University Press, Cambridge, pp. 799–826.

    Google Scholar 

  • International Energy Agency (IEA): 2001a, Carbon Dioxide Capture from Power Stations, OECD, Paris (available at: www.ieagreen.org.uk)

    Google Scholar 

  • International Energy Agency (IEA): 2001b, Carbon Dioxide Disposal from Power Stations, OECD, Paris (available at: www.ieagreen.org.uk)

    Google Scholar 

  • International Energy Agency (IEA): 2001c, Ocean Storage of CO 2, OECD, Paris (available at: www.ieagreen.org.uk)

    Google Scholar 

  • Ishitani, H. et al.: 1996, 'Energy Supply Mitigation Options', in Watson, R. T., Zinyowera, M. C., and Moss, R. H. (eds.), Climate Change 1995-Impacts, Adaptation and Mitigation of Climate Change: Scientific Analysis, Cambridge University Press, pp. 585–647.

  • Keith, D. W. and Rhodes, J. S.: 2002, 'Bury, Burn or Both: A Two-for-One Deal on Biomass Carbon and Energy', Clim. Change 54, 375–377.

    Google Scholar 

  • Kheshgi, H. S. and Archer, D. E.: 1999, 'Modelling the Evasion of CO2 Injected into the Deep Ocean', in Riemer, P., Eliasson, B., and Wokaun, A. (eds.), Greenhouse Gas Control Technologies, Elsevier Science, New York, pp. 287–292.

    Google Scholar 

  • Kleypas, J.: 1998, 'Symposium Participants Assess Future of Coral Reefs', EOS 79 (21), 249, 251, 253.

    Google Scholar 

  • Kleypas, J.: 1999, 'Geochemical Consequences of Increased Atmospheric Carbon Dioxide on Coral Reefs', Science 284, 118–120.

    Google Scholar 

  • Knutti, R., Stocker, T. F., Joos, F., and Plattner, G.-K.: 2002, 'Constraints on Radiative Forcing and Future Climate Change from Observations and Climate Model Ensembles', Nature 416, 719–723.

    Google Scholar 

  • Langdon, C., Takahashi, T., Sweeney, C., Chipman, D., Goddard, J., Marubini, F., Aceves, H., Barnett, H., and Atkinson, M.: 2000, 'Effect of Calcium Carbonate Saturation State on the Calcification Rate of an Experimental Coral Reef', Global Biogeochem. Cycles 14, 639–654.

    Google Scholar 

  • Lazarus, M. L., Greber, L., Jall, J., Bartels, C., Bernow, S., Hansen, E., Raskin, P., and von Hippel, D.: 1993, Towards a Fossil Fuel Free Energy Future: The Next Energy Transition, Technical Analysis for Greenpeace International, Stockholm Environmental Institute Boston Center.

  • Lutz, W., Sanderson, W., and Scherbov, S.: 2001, 'The End of World Population Growth', Nature 412, 543–545.

    Google Scholar 

  • Marland, G., Boden, T. A., and Andres, R. J.: 2002, 'Global, Regional, and National Fossil Fuel CO2 Emissions', in Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, U.S.A.

    Google Scholar 

  • Metting, F. B., Smith, J. L., Amthor, J. S., and Isaurralde, R. C.: 2001, 'Science Needs and New Technology for Increasing Soil Carbon Sequestration', Clim. Change 51, 11–34.

    Google Scholar 

  • Metzger, R. A. and Benford, G.: 2002, 'Sequestration of Atmospheric Carbon through Permanent Disposal of Crop Residue', Clim. Change 49, 11–19.

    Google Scholar 

  • Metzger, R. A., Benford, G., and Hoffert, M. I.: 2001, 'To Bury or Burn: Optimum Use of Crop Residues to Reduce Atmospheric CO2', Clim. Change 54, 369–374.

    Google Scholar 

  • Morgan, M. G., Pitelka, L. F., and Shevliakova, E.: 2001, 'Elicitation of Expert Judgments of Climate Change Impacts on Forest Ecosystems', Clim. Change 49, 279–307.

    Google Scholar 

  • Nihous, G. C.: 1997, 'Technological Challenges Associated with the Sequestration of CO2 in the Ocean', Waste Management 17, 337–341.

    Google Scholar 

  • Osborn, T. J. and Wigley, T. M. L.: 1994, 'A Simple Model for Estimating Methane Concentration and Lifetime Variations', Clim. Dyn. 9: 181–193.

    Google Scholar 

  • Parry, M., Arnell, N., McMichael, T., Nicholls, R., Martens, P., Kovats, S., Livermore, M., Rosenzweig, C., Iglesias, A., and Fischer, G.: 2001, 'Millions at Risk: Defining Critical Climate Change Threats and Targets', Global Environ Change 11, 181–183.

    Google Scholar 

  • Parson, E. A. and Keith, D. W.: 1998, 'Fossil Fuels without CO2 Emissions', Science 282, 1053–1054.

    Google Scholar 

  • Peng, T.-H., Takahashi, T., Broecker, W. S., and Olafsson, J.: 1987, 'Seasonal Variability of Carbon Dioxide, Nutrients and Oxygen in the Northern North Atlantic Surface Water: Observations and a Model', Tellus 39B, 439–458.

    Google Scholar 

  • Prentice, I. C. et al.: 2001, 'The Carbon Cycle and Atmospheric Carbon Dioxide', in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, pp. 183–237.

    Google Scholar 

  • Ramaswamy, V. et al.: 2001, 'Radiative Forcing of Climate Change', in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, pp. 349–416.

    Google Scholar 

  • Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, R., and Morel, F. M. M.: 2000, 'Reduced Calcification of Marine Plankton in Response to Increased Atmospheric CO2', Nature 407, 364–367.

    Google Scholar 

  • Riemer, P., Eliasson, B., and Wokaun, A. (eds.): 1999, Greenhouse Gas Control Technologies, Elsevier Science, New York.

    Google Scholar 

  • Rosenzweig, C., Parry, M. L., Fischer, G., and Frohberg, K.: 1993, Climate Change and World Food Supply, Environmental Change Unit, University of Oxford, Research Report No. 3, 28 pp.

  • Schlesinger, W. H.: 2000, 'Carbon Sequestration in Soils: Some Cautions Amidst Optimism', Agric. Ecosystems Env. 82, 121–127.

    Google Scholar 

  • Shirayama, Y.: 1997, 'Biodiversity and Biological Impact of Ocean Disposal of Carbon Dioxide', Waste Management 17, 381–384.

    Google Scholar 

  • Stocker, T. F., Broecker, W. S., and Wright, D. G.: 1994, 'Carbon Uptake Experiments with a Zonally-Averaged Global Ocean Circulation Model', Tellus, 46B, 103–122.

    Google Scholar 

  • United Nations: 1992, United Nations Framework Convention on Climate Change, U.N. Doc. A/AC.237/18 (Part II)/Add.1, 15 May 1992.

  • Wellington, G. M, Glynn, P. W., Strong, A. E., Navarrete, A., Wieters, E., and Hubbard, D.: 2001, 'Crisis on Coral Reefs Linked to Climate Change', EOS 82(1), 1, 5.

    Google Scholar 

  • White, A., Melvin, G. R. C., and Friend, A. D., 1999: 'Climate Change Impacts on Ecosystem and the Terrestrial Carbon Sink: A New Assessment', Global Environ Change 9, S21–S30.

    Google Scholar 

  • Wilkinson, C. R.: 1999, 'Global and Local Threats to Coral Reef Functioning and Existence: Review and Predictions', Mar. Freshwater Res. 50, 867–878.

    Google Scholar 

  • Williams, R. H.: 1998, 'Fuel Decarbonization for Fuel Cell Applications and Sequestration of the Separated CO2', in Ayres, R. U. and Weaver, P. M. (eds.), Ecorestructuring: Implications for Sustainable Development, United Nations University Press, Tokyo, pp. 180–222.

    Google Scholar 

  • Wolfe, D. W. and Erickson, J. D.: 1993, 'Carbon Dioxide Effects on Plants: Uncertainties and Implications for Modeling Crop Response to Climate Change', in Kaiser, R. U. and Drennen, T. E. (eds.), Agricultural Dimensions of Global Climate Change, St. Lucie Press, Delray Beach Florida, pp. 153–178.

    Google Scholar 

  • Wolf-Gladrow, D. A., Riebesell, U., Buckhardt, S., and Bijma, J.: 1999, 'Direct Effects of CO2 Concentration on Growth and Isotopic Composition of Marine Plankton', Tellus 51B, 461–476.

    Google Scholar 

  • Worldwatch Institute, 2002: Vital Signs 2002: The Trends that Are Shaping Our Future, W. W. Norton, New York, 215 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, L.D.D. Declining Temporal Effectiveness of Carbon Sequestration: Implications for Compliance with the United National Framework Convention on Climate Change. Climatic Change 63, 259–290 (2004). https://doi.org/10.1023/B:CLIM.0000018511.36935.e0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CLIM.0000018511.36935.e0

Keywords

Navigation