Skip to main content
Log in

Interaction of Serotonin1A Receptors from Bovine Hippocampus with Tertiary Amine Local Anesthetics

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. We have examined the interaction of tertiary amine local anesthetics with the bovine hippocampal serotonin1A (5-HT1A) receptor, an important member of the G-protein- coupled receptor superfamily.

2. The local anesthetics inhibit specific agonist and antagonist binding to the 5-HT1A receptor at a clinically relevant concentration range of the anesthetics. This is accompanied by a concomitant reduction in the binding affinity of the 5-HT1A receptor to the agonist. Interestingly, the extent of G-protein coupling of the receptor is reduced in the presence of the local anesthetics.

3. Fluorescence polarization measurements using depth-dependent fluorescent probes show that procaine and lidocaine do not show any significant change in membrane fluidity. On the other hand, tetracaine and dibucaine were found to alter fluidity of the membrane as indicated by a fluorescent probe which monitors the headgroup region of the membrane.

4. The local anesthetics showed inhibition of agonist binding to the 5-HT1A receptor in membranes depleted of cholesterol more or less to the same extent as that of control membranes in all cases. This suggests that the inhibition in ligand binding to the 5-HT1A receptor brought about by local anesthetics is independent of the membrane cholesterol content.

5. Our results on the effects of the local anesthetics on the ligand binding and G-protein coupling of the 5-HT1A receptor support the possibility that G-protein-coupled receptors could be involved in the action of local anesthetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abrams, F. S., and London, E. (1993). Extension of the parallax analysis of membrane penetration depth to the polar region of model membranes: Use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup. Biochemistry 32:10826-10831.

    Google Scholar 

  • Albert, P. R., Zhou, Q.-Y., Van Tol, H. H. M., Bunzow, J. R., and Civelli, O. (1990). Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. J. Biol. Chem. 265:5825-5832.

    Google Scholar 

  • Arias, H. R. (1999). Role of local anesthetics on both cholinergic and serotonergic ionotropic receptors. Neurosci. Biobehav. Rev. 23:817-843.

    Google Scholar 

  • Bikker, J. A., Trumpp-Kallmeyer, S., and Humblet, C. (1998). G-protein coupled receptors: Models, mutagenesis, and drug design. J. Med. Chem. 41:2911-2927.

    Google Scholar 

  • Bligh, E. G., and Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917.

    Google Scholar 

  • Bruns, R. F., Lawson-Wendling, K., and Pugsley, T. A. (1983). A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal. Biochem. 132:74-81.

    Google Scholar 

  • Chattopadhyay, A., and Harikumar, K. G. (1996). Dependence of critical micelle concentration of a zwitterionic detergent on ionic strength: Implications in receptor solubilization. FEBS Lett. 391:199-202.

    Google Scholar 

  • Chattopadhyay, A., Harikumar, K. G., and Kalipatnapu, S. (2002). Solubilization of high affinity G-protein-coupled serotonin1A receptors from bovine hippocampus using pre-micellar CHAPS at low concentration. Mol. Membr. Biol. 19:211-220.

    Google Scholar 

  • Chattopadhyay, A., Jafurulla, Md., and Kalipatnapu, S. (2004). Solubilization of serotonin1A receptors heterologously expressed in chinese hamster ovary cells. Cell. Mol. Neurobiol. 24:293-300.

    Google Scholar 

  • Chattopadhyay, A., and London, E. (1984). Fluorimetric determination of critical micelle concentration avoiding interference from detergent charge. Anal. Biochem. 139:408-412.

    Google Scholar 

  • Chattopadhyay, A., and London, E. (1987). Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26:39-45.

    Google Scholar 

  • Chen, R. F., and Bowman, R. L. (1965). Fluorescence polarization: Measurement with ultraviolet-polarizing filters in a spectrophotofluorometer. Science 147:729-732.

    Google Scholar 

  • De Paula, E., and Schreier, S. (1995). Use of a novel method for determination of partition coefficients to compare the effect of local anesthetics on membrane structure. Biochim. Biophys. Acta 1240:25-33.

    Google Scholar 

  • De Paula, E., and Schreier, S. (1996). Molecular and physicochemical aspects of local anesthetic-membrane interaction. Braz. J. Med. Biol. Res. 29:877-894.

    Google Scholar 

  • Emerit, M. B., El Mestikawy, S., Gozlan, H., Rouot, B., and Hamon, M. (1990). Physical evidence of the coupling of solubilized 5-HT1A binding sites with G regulatory proteins. Biochem. Pharmacol. 39:7-18.

    Google Scholar 

  • Fargin, A., Raymond, J. R., Lohse, M. J., Kobilka, B. K., Caron, M. G., and Lefkowitz, R. J. (1988). The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 335:358-360.

    Google Scholar 

  • Franks, N. P., and Lieb, W. R. (1997). Anesthetics set their sites on ion channels. Nature 389:334-335.

    Google Scholar 

  • Gimpl, G., Burger, K., and Fahrenholz, F. (1997). Cholesterol as modulator of receptor function. Biochemistry 36:10959-10974.

    Google Scholar 

  • Gozlan, H., El Mestikawy, S., Pichat, L., Glowinski, J., and Hamon, M. (1983). Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 305:140-142.

    Google Scholar 

  • Gutierrez-Merino, C., Molina, A., Escudero, B., Diez, A., and Laynez, J. (1989). Interaction of the local anesthetics dibucaine and tetracaine with sarcoplasmic reticulum membranes. Differential scanning calorimetry and fluorescence studies. Biochemistry 28:3398-3406.

    Google Scholar 

  • Harikumar, K. G., and Chattopadhyay, A. (1998a). Metal ion and guanine nucleotide modulations of agonist interaction in G-protein-coupled serotonin1A receptors from bovine hippocampus. Cell. Mol. Neurobiol. 18:535-553.

    Google Scholar 

  • Harikumar, K. G., and Chattopadhyay, A. (1998b). Modulation of agonist and antagonist interactions in serotonin1A receptors by alcohols. FEBS Lett. 438:96-100.

    Google Scholar 

  • Harikumar, K. G., and Chattopadhyay, A. (1999). Differential discrimination of G-protein coupling of serotonin1A receptors from bovine hippocampus by an agonist and an antagonist. FEBS Lett. 457:389-392.

    Google Scholar 

  • Harikumar, K. G., and Chattopadhyay, A. (2000). Effect of alcohols on G-protein coupling of serotonin1A receptors from bovine hippocampus. Brain Res. Bull. 52:597-601.

    Google Scholar 

  • Harikumar, K. G., and Chattopadhyay, A. (2001). Modulation of antagonist binding to serotonin1A receptors from bovine hippocampus by metal ions. Cell. Mol. Neurobiol. 21:453-464.

    Google Scholar 

  • Harikumar, K. G., John, P. T., and Chattopadhyay, A. (2000). Role of disulfides and sulfhydryl groups in agonist and antagonist binding in serotonin1A receptors from bovine hippocampus. Cell. Mol. Neurobiol. 20:665-681.

    Google Scholar 

  • Harris, R. A., and Groh, G. I. (1985). Membrane disordering effects of anesthetics are enhanced by gangliosides. Anesthesiology 62:115-119.

    Google Scholar 

  • Heath, M. J. S., and Hen, R. (1995). Genetic insights into serotonin function. Curr. Biol. 5:997-999.

    Google Scholar 

  • Higashijima, T., Ferguson, K. M., Sternweis, P. C., Smigel, M. D., and Gilman, A. G. (1987). Effects of Mg2 and the beta gamma-subunit complex on the interactions of guanine nucleotides with G proteins. J. Biol. Chem. 262:762-766.

    Google Scholar 

  • Ho, B. Y., Karschin, A., Branchek, T., Davidson, N., and Lester, H. A. (1992). The role of conserved aspartate and serine residues in ligand binding and in function of the 5-HT1A receptor: A site-directed mutation study. FEBS Lett. 312:259-262.

    Google Scholar 

  • Hollmann, M. W., Wieczorek, K. S., Berger, A., and Durieux, M. E. (2001). Local anesthetic inhibition of G protein-coupled receptor signaling by interference with Gαq protein function. Mol. Pharmacol. 59:294-301.

    Google Scholar 

  • Ishizawa, Y., Pidikiti, R., Liebman, P. A., and Eckenhoff, R. G. (2002). G protein-coupled receptors as direct targets of inhaled anesthetics. Mol. Pharmacol. 61:945-952.

    Google Scholar 

  • Kaiser, R. D., and London, E. (1998). Location of diphenylhexatriene (DPH) and its derivatives within membranes: Comparison of different fluorescence quenching analyses of membrane depth. Biochemistry 37:8180-8190.

    Google Scholar 

  • Kallal, L., and Benovic, J. L. (2000). Using green fluorescent proteins to study G-protein-coupled receptor localization and trafficking. Trends Pharmacol. Sci. 21:175-180.

    Google Scholar 

  • Kitagawa, S., and Hirata, H. (1992). Effects of alcohols on fluorescence anisotropies of diphenylhexatriene and its derivatives in bovine blood platelets: Relationships of the depth-dependent change in membrane fluidity by alcohols with their effects on platelet aggregation and adenylate cyclase activity. Biochim. Biophys. Acta 1112:14-18.

    Google Scholar 

  • Klein, U., Gimpl, G., and Fahrenholz, F. (1995). Alteration of the myometrial plasma membrane cholesterol content with β-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34:13784-13793.

    Google Scholar 

  • Kuipers, W., Link, R., Standaar, P. J., Stoit, A. R., Van Wijngaarden, I., Leurs, R., and Ijzerman, A. P. (1997). Study of the interaction between aryloxypropanolamines and Asn386 in helix VII of the human 5-hydroxytryptamine1A receptor. Mol. Pharmacol. 51:889-896.

    Google Scholar 

  • Kung, M.-P., Frederick, D., Mu, M., Zhuang, Z.-P., and Kung, H. F. (1995). 4-(2′-Methoxy)-phenyl)-1-[2′-(N-2′′-pyridinyl)-p-iodobenzamido]ethyl-piperazine [125I]p-MPPI) as a new selective radioligand of serotonin-1A sites in rat brain: In vitro binding and autoradiographic studies. J. Pharmacol. Exp. Ther. 272:429-437.

    Google Scholar 

  • Lee, A. G. (2003). Lipid-protein interactions in biological membranes: A structural perspective. Biochim. Biophys. Acta 1612:1-40.

    Google Scholar 

  • Lentz, B. R. (1989). Membrane “fluidity” as detected by diphenylhexatriene probes. Chem. Phys. Lipids 50:171-190.

    Google Scholar 

  • Mihic, S. J., Ye, Q., Wick, M. J., Koltchine, V. V., Krasowski, M. D., Finn, S. E., Mascia, M. P., Valenzuela, C. F., Hanson, K. K., Greenblatt, E. P., Harris, R. A., and Harrison, N. L. (1997). Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature 389:385-389.

    Google Scholar 

  • Mondal, M., Mukhopadhyay, K., Basak, S., and Chakrabarti, A. (2001). Effect of cholesterol on interaction of dibucaine with phospholipid vesicles: A fluorescence study. Biochim. Biophys. Acta 1511:146-155.

    Google Scholar 

  • Ortells, M. O., and Lunt, G. G. (1995). Evolutionary history of the ligand-gated ion channel superfamily of receptors. Trends Neurosci. 18:121-127.

    Google Scholar 

  • Pentyala, S. N., Sung, K.-Y., Chowdhury, A., and Rebecchi, M. J. (1999). Volatile anesthetics modulate the binding of guanine nucleotides to the α subunits of heterotrimeric GTP binding proteins. Eur. J. Pharmacol. 384:213-222.

    Google Scholar 

  • Pierce, K. L., Premont, R. T., and Lefkowitz, R. J. (2002). Seven-transmembrane receptors. Nat. Rev. Mol. Cell. Biol. 3:639-650.

    Google Scholar 

  • Prendergast, F. G., Haugland, R. P., and Callahan, P. J. (1981). 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene: Synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers. Biochemistry 20:7333-7338.

    Google Scholar 

  • Rehberg, B., Urban, B. W., and Duch, D. S. (1995). The membrane lipid cholesterol modulates anesthetic actions on a human brain ion channel. Anesthesiology 82:749-758.

    Google Scholar 

  • Revathi, C. J., Chattopadhyay, A., and Srinivas, U. K. (1994). Change in membrane organization induced by heat shock. Biochem. Mol. Biol. Int. 32:941-950.

    Google Scholar 

  • Seeman, P. (1972). The membrane actions of anesthetics and tranquilizers. Pharmacol. Rev. 24:583-655.

    Google Scholar 

  • Shanti, K., and Chattopadhyay, A. (2000). A new paradigm in the functioning of G-protein-coupled receptors. Curr. Sci. 79:402-403.

    Google Scholar 

  • Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76-85.

    Google Scholar 

  • Sojcic, Z., Toplak, H., Zuehlke, R., Honegger, U. E., Buhlmann, R., and Wiesmann, U. N. (1992). Cultured human skin fibroblasts modify their plasma membrane lipid composition and fluidity according to growth temperature suggesting homeoviscous adaptation at hypothermic (30°C) but not at hyperthermic (40°C) temperatures. Biochim. Biophys. Acta 1104:31-37.

    Google Scholar 

  • Stadel, J. M., Wilson, S., and Bergsma, D. J. (1997). Orphan G protein-coupled receptors: A neglected opportunity for pioneer drug discovery. Trends Pharmacol. Sci. 18:430-437.

    Google Scholar 

  • Strader, C. D., Fong, T. M., Graziano, M. P., and Tota, M. R. (1995). The family of G-protein-coupled receptors. FASEB J. 9:745-754.

    Google Scholar 

  • Sweet, W. D., and Schroeder, F. (1986). Plasma membrane lipid composition modulates action of anesthetics. Biochim. Biophys. Acta 861:53-61.

    Google Scholar 

  • Xiong, Z., Bukusoglu, C., and Strichartz, G. R. (1999). Local anesthetics inhibit the G protein-mediated modulation of K+ and Ca2 currents in anterior pituitary cells. Mol. Pharmacol. 55:150-158.

    Google Scholar 

  • Yeagle, P. L. (1985). Cholesterol and the cell membrane. Biochim. Biophys. Acta 822:267-287.

    Google Scholar 

  • Yun, I., Cho, E.-S., Jang, H.-O., Kim, U.-K., Choi, C.-H., Chung, I.-K., Kim, I.-S., and Wood, W. G. (2002). Amphiphilic effects of local anesthetics on rotational mobility in neuronal and model membranes. Biochim. Biophys. Acta 1564:123-132.

    Google Scholar 

  • Zhou, W., Arrabit, C., Choe, S., and Slesinger, P. A. (2001). Mechanism underlying bupivacaine inhibition of G protein-gated inwardly rectifying K+ channels. Proc. Natl. Acad. Sci. U.S.A. 98:6482-6487.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalipatnapu, S., Chattopadhyay, A. Interaction of Serotonin1A Receptors from Bovine Hippocampus with Tertiary Amine Local Anesthetics. Cell Mol Neurobiol 24, 403–422 (2004). https://doi.org/10.1023/B:CEMN.0000022771.33702.85

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CEMN.0000022771.33702.85

Navigation