Skip to main content
Log in

Blends of cellulose ester/phenolic polymers – chemical and thermal properties of blends with polyvinyl phenol

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A series of miscible cellulose ester/poly (vinyl phenol) (CE/PVP) blends containing a latent formaldehyde source were prepared. Due to the low molecular weight of the PVP, the maximum PVP content ID the films was 50 wt %. The blends were then thermally cross-linked ID an attempt to create semi-interpenetrating polymer networks (semi-IPN). The blends were characterized with differential scanning calorimetry, swelling experiments, pyrolysis molecular beam mass spectrometry (py-MBMS), and Fourier transform infrared (FTIR) spectroscopy. The results from the swelling experiments, py-MBMS and FTIR showed that the PVP component did react with the formation of methylene bridges. Blends that contained 50% PVP and high levels of formaldehyde formed semi-IPN structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bikalas N.M. and Segal L. 1971. Cellulose and Cellulose Derivatives, Part V, Cellulose Esters. Wiley-Interscience, New York.

    Google Scholar 

  • Blazso M. and Toth T. 1986. Thermal decomposition of methylene bridges and methyl groups at aromatic rings ID phenolformaldehyde polycondensates. J. Anal. Appl. Pyrol. 10: 41.

    Google Scholar 

  • Buchanan C.M., Gedon S.C., Pearcy B.G., White A.W. and Wood M.D. 1993. Cellulose ester-aliphatic polyester blends: influence of diol chain length on blend miscibility. Macromolecules 26(21): 5704-5710.

    Google Scholar 

  • Cohen Y. and Aizenshtat Z. 1992. Investigation of pyrolytically produced condensates of phenol-formaldehyde resins, ID relation to their structure and decomposition mechanism. J. Anal. Appl. Pyrol. 22: 153.

    Google Scholar 

  • Coleman M.M., Graf J.F. and Painter P.C. 1991. Specific Interactions and the Miscibility of Polymer Blends. Technomic Publishing Co., Lancaster, UK.

    Google Scholar 

  • Davis M.F., Wang X.-M., Myers M.D., Iwamiya J.H. and Kelley S.S. 1998. A study of the molecular interactions occurring ID blends of cellulose esters and phenolic polymers. ID: Heinze T.J. and Glasser W.G. (eds), Cellulose Derivatives: Modification, Characterization and Nanostructures, ACS Symposium Series 688. ACS, Washington, DC, pp. 283-295.

    Google Scholar 

  • Edgar K.J., Buchanan C.M., Debenham J.S., Rundquist P.A., Seiler B.D., Shelton M.C. and Tindall D. 2001. Advances ID cellulose ester performance and applications. Prog. Polym. Sci. 26: 1605-1688.

    Google Scholar 

  • Evans R.J. and Milne T.A. 1987. Molecular characterization of the pyrolysis of biomass. 1. Fundamentals. Energy Fuels 1: 123-137.

    Google Scholar 

  • Evans R.J., Wang D., Agblevor F.A., Chum H.L. and Baldwin S.D. 1996. Mass spectrometric studies of the thermal decomposition of carbohydrates using 13C-labeled cellulose and glucose. Carbohydr. Res. 281: 219-235.

    Google Scholar 

  • Fahrenholtz S.R. and Kwei T.K. 1981. Compatibility of polymer mixtures containing novolac resins. Macromolecules 14: 1076-1079.

    Google Scholar 

  • Flory P.J. 1953. Principles of Polymer Science. Cornell University Press, Ithaca, NY, p. 383.

    Google Scholar 

  • Gardiner E. and Cabasso ID 1987. On the compatibility and thermally induced blending of poly(styrene phosphonate diethyl ester) with cellulose acetate. Polymers 28(12): 2052-2056.

    Google Scholar 

  • Gould D.F. 1959. Phenolic Resins. Reinhold Publishing Corporation, New York.

    Google Scholar 

  • Hong J., Goh S.H., Lee S.Y. and Siow K.S. 1995. Miscibility of poly(β-vinylphenol) with poly(dialkyl itaconate)s and poly-(methyoxycarbonylmethyl methacrylates). Polymers 36(1): 143-147.

    Google Scholar 

  • Kelley S.S., Elam C.C., Evans R.J. and Looker M.J. 1997. Recovery of phenolic monomers from industrial novolac plastics. ACS Div. Fuel Chem. 42(4): 1023-1027.

    Google Scholar 

  • Kim H.-ID, Pearce E.M. and Kwei T.K. 1989a. Miscibility controlby hydrogen bonding ID polymer blends and interpenetrating-networks. Macromolecules 22: 3374-3380.

    Google Scholar 

  • Kim H.-ID, Pearce E.M. and Kwei T.K. 1989b. Phase behavior of copolymer blends. Macromolecules 22: 3498-3500.

    Google Scholar 

  • Klarman A.F., Galanti A.V. and Sperling L.H. 1969. Transition temperatures and structural correlations for cellulose triesters. J. Polym. Sci., Part A-2 7: 1513-1523.

    Google Scholar 

  • Landry C.J.T. and Teegarden D.M. 1991. Heats of mixing of strongly interacting model compounds and miscibility of the corresponding polymers. Macromolecules 24: 4310-4321.

    Google Scholar 

  • Landry C.J., Teegarden D.M., Edgar K.J. and Kelley S.S. 1994a. Miscible blends of cellulose esters and vinylphenol containing polymers. European Patent 580, 123.

    Google Scholar 

  • Landry C.J., Teegarden D.M., Edgar K.J. and Kelley S.S. 1994b. Miscible blends of cellulose esters and vinylphenol containing polymers. US Patent 5,302,637.

    Google Scholar 

  • Landry M.R., Massa D.J., Landry C.J.T., Teegarden D.M., Colby R.H., Long T.E. and Henrichs P.M. 1997. A survey of polyvinylphenol blend miscibility. J. Appl. Polym. Sci. 54: 991-1011.

    Google Scholar 

  • Lotti N. and Scandola M. 1992. Miscibility of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with ester substituted celluloses. Polym. Bull. 29(3-4): 407-413.

    Google Scholar 

  • Maekawa M., Pearce R., Marchessault R.H. and Manley R.S.J. 1999. Miscibility and tensile properties of poly(β-hydroxylbutyrate)-cellulose propionate blends. Polymers 40: 1501-1505.

    Google Scholar 

  • Martens H. and Næs T. 1989. Multivariate Calibration. John Wiley and Sons, New York.

    Google Scholar 

  • Massart D.L., Vandeginste B.G.M., Buydens L.M.C., De Jong S., Lewi P.J. and Smeyers-Verbeke J. 1997. Handbook of Chemometrics and Qualimetrics: Part A. Elsevier, Amsterdam, The Netherlands, pp. 517-556.

    Google Scholar 

  • de Meftahi M.V. and Frechet J.M.J. 1988. Study of the compatibility of blends of polymers and copolymers containing styrene, 4-hydroxystyrene and 4-vinylpyridine. Polymers29(3): 477-482.

    Google Scholar 

  • Moskala E.J., Howe S.E., Painter P.C. and Coleman M.M. 1984. On the role of intermolecular hydrogen bonding ID miscible polymer blends. Macromolecules 17: 1671-1678.

    Google Scholar 

  • Moskala E.J., Varnell D.F. and Coleman M.M. 1985. Concerning the miscibility of poly(vinyl phenol) blends-FTIR study. Polymers 26(2): 228-234.

    Google Scholar 

  • Nguyen Q.T., Leger C., Billard P. and Lochon P. 1997. Novel membranes made from a semi-interpenetrating polymer network for ethanol-ETBE separation by pervaporation. Polym. Adv. Techn. 8(8): 487-495.

    Google Scholar 

  • Nishio T. 1997. Blends of poly(β-caprolactone) with cellulose alkyl esters: effect of the alkyl side-chain length and degree of substitution on miscibility. Cellulose 4(2): 131-145.

    Google Scholar 

  • Oh Y.S. and Kim B.K. 1997. Aminated polyacrylonitrile blends with cellulose acetate. J. Macromol. Sci. Phys. B36(5): 667-679.

    Google Scholar 

  • Olabisi O., Robeson L.M. and Shaw M.T. 1979. Polymer-Polymer Miscibility. Academic Press, San Diego, CA.

    Google Scholar 

  • Park H., Pearce E.M., Starnes W.H. and Kwei T.K. 1990. Thermal oxidation of blends of poly(vinyl methyl ether) and modified polystyrenes. J. Polym. Sci., Part A: Polym. Chem. 28: 1079-1089.

    Google Scholar 

  • Paul D.R. and Newman S. 1978. Polymer Blends, Vol. 1, Academic Press, Orlando, FL.

    Google Scholar 

  • Paul D.R. and Sperling L.H. 1986. Multicomponent Polymer Blends. Advances ID Chemistry Series 211, American Chemical Society, Washington, DC.

    Google Scholar 

  • Pearce E.M. and Kwei T.K. 1992. Hydrogen bonding interactions ID polymer blends. ID: Noda ID and Rubingh D.N. (eds), Polymer Solutions, Blends and Interfaces. Elsevier Science Publishing, New York, pp. 133-149.

    Google Scholar 

  • Pearce E.M., Kwei T.K. and Lu S. 1994. Miscible blends through hydrogen bonding: Effects on polymer properties. Polym. Adv. Tech. 5: 600-602.

    Google Scholar 

  • Pennacchia J.R., Pearce E.M., Kwei T.K., Bulkin B.J. and Chen J.-P. 1986. Compatibility of substituted phenol condensation resins with poly(methyl methacrylate). Macromolecules 19: 973-977.

    Google Scholar 

  • Scandola M., Pizzoli M. and Ceccorulli G. 1993. Thermal properties of polymer blends based on biodegradable bacterial polyesters. Calorimetrie Anal. Thermique 24: 433-436.

    Google Scholar 

  • Schwarzinger C., Tanczos ID and Schmidt H. 2001. Pyrolysis-gas chromatography/mass spectrometry and thermally assisted hydrolysis and methylation analysis of various cellulose esters. J. Appl. Anal. Pyrol. 58-59: 513-523.

    Google Scholar 

  • Serman C.J., Xu X., Painter P.C. and Coleman M.M. 1991. Poly(vinyl phenol)-polyether blends. Polymers 32(3): 516-522.

    Google Scholar 

  • Silverstein R.M., Bassler G.C. and Morrill T.C. 1981. Spectrometric Identification of Organic Compounds, 4th edn. John Wiley and Sons, New York, pp. 95-170.

    Google Scholar 

  • Still R.H. and Whitehead A. 1977a. Thermal degradation of polymers. XV. Vacuum pyrolysis studies on poly(β-methoxystyrene) and poly(β-hydroxystyrene). J. Appl. Polym. Sci. 21: 1199-1213.

    Google Scholar 

  • Still R.H. and Whitehead A. 1977b. Thermal degradation of polymers. XVI. Thermal analysis studies on poly(β-methoxystyrene) and poly(β-hydroxystyrene) ID air and nitrogen. J. Appl. Polym. Sci. 21: 1215-1225.

    Google Scholar 

  • Sun J. and Cabasso ID 1991. Correlation between the degree of phosphorylation of poly(styrenephosphonate ester) and its blends with cellulose acetate. Macromolecules 24(12): 3603-3611.

    Google Scholar 

  • Ting S.P., Bulkin B.J. and Pearce E.M. 1981. Compatibility studies of styrene and hydroxyl containing styrene copolymers with poly(ethylene oxide). J. Polym. Sci. Polym. Chem. Ed. 19: 1451-1473.

    Google Scholar 

  • White A.W., Buchanan C.M., Pearcy B.G. and Wood M.D. 1994. Mechanical properties of cellulose acetate propionate/aliphatic polyester blends. J. Appl. Polym. Sci. 52(4): 525-530.

    Google Scholar 

  • Wilson A.K., Posey-Dowty J.D. and Kelley S.S. 1996a. Controlled release matrix system using cellulose acetate/polyvinylpyrrolidone blends. US Patent 5, 523,095.

    Google Scholar 

  • Wilson A.K., Posey-Dowty J.D. and Kelley S.S. 1996b. Controlled release matrix system using cellulose acetate/ poly-2-ethyl-2-oxazoline blends. US patent 5,536,505.

    Google Scholar 

  • Xu Y., Painter P.C. and Coleman M.M. 1992. On the glass transition of copolymers of 4-vinyl phenol with β-alkyl methacrylates. Macromolecules 25: 7076-7077.

    Google Scholar 

  • Yang T.P., Pearce E.M., Kwei T.K. and Yang N.L. 1989. Complexation of poly(N,N-dimethylacrylamide) and phenol-formaldehyde resins. Macromolecules 22: 1813-1818.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen S. Kelley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaibler, D.W., Rochefort, W.E., Wilson, J.B. et al. Blends of cellulose ester/phenolic polymers – chemical and thermal properties of blends with polyvinyl phenol. Cellulose 11, 225–237 (2004). https://doi.org/10.1023/B:CELL.0000025425.00668.de

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CELL.0000025425.00668.de

Navigation