Skip to main content
Log in

Comparative Study of the 2:3 and 3:4 Resonant Motion with Neptune: An Application of Symplectic Mappings and Low Frequency Analysis

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The 2:3 and 3:4 exterior mean motion resonances with Neptune are studied by applying symplectic mapping models. The mappings represent efficiently Poincaré maps for the 3D elliptic restricted three body problem in the neighbourhood of the particular resonances. A large number of trajectories is studied showing the coexistence of regular and chaotic orbits. Generally, chaotic motion depletes the small bodies of the effective resonant region in both the 2:3 and 3:4 resonances. Applying a low frequency spectral analysis of trajectories, we determined the phase space regions that correspond to either regular or chaotic motion. It is found that the phase space of the 3:4 resonant motion is more chaotic than the 2:3 one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chiang, E. I. and Jordan, A. B.: 2002, ‘On the Plutinos and Twotinos of the Kuiper belt'. A. J. 124, 3430–3444.

    Article  ADS  Google Scholar 

  • Collander-Brown, S. J., Melita, M. D., Williams, I. P. and Fitzsimmons, A.: 2003, ‘The plane of the EKB belt'. Icarus 162, 22–26.

    Article  ADS  Google Scholar 

  • Duncan, M. J., Quinn, T. R. and Tremaine, S.: 1988, ‘The origin of short-period comets'. ApJ. 328, L69–L73.

    Article  ADS  Google Scholar 

  • Duncan, M. J., Levison, H. F. and Budd, S. M.: 1995, ‘The dynamical structure of the Kuiper belt', Astron. J. 110, 3073–3081.

    Article  ADS  Google Scholar 

  • Ferraz-Mello, S.: 1994, ‘The convergence domain of the Laplacian expansion of the disturbing function'. Cel.Mech. Dyn. Astr. 58, 37–52.

    ADS  MathSciNet  Google Scholar 

  • Friedland, L.: 2001, ‘Migration timescale thresholds for resonant capture in the Plutino problem', ApJ. 547, L75–L79.

    Article  ADS  Google Scholar 

  • Froeschlé, Cl., Gonczi, R. and Lega, E.: 1997, ‘The fast Lyapunov indicator: a simple tool to detect weak chaos'. Planet. Space Sci. 45, 881–886.

    ADS  Google Scholar 

  • Gallardo, T. and Ferraz-Mello, S.: 1997, ‘Understanding libration via time-frequency analysis', Astron. J. 113(2), 862–869.

    ADS  Google Scholar 

  • Gallardo, T. and Ferraz-Mello, S.: 1998, ‘Dynamics of the 2:3 exterior resonance with Neptune', Planet Space Sci. 46, 945–965.

    Article  ADS  Google Scholar 

  • Gomes, R. S.: 2003, ‘The origin of the KB high-inclination population'. Icarus 161, 404–418.

    Article  ADS  Google Scholar 

  • Goździewski, K., Bois, E., Maciejewski, A. J. and Kiseleva-Eggleton, L.: 1991, ‘Global dynamics of planetary systems with the MEGNO criterion'. Astron. Astroph. 378, 569–586.

    ADS  Google Scholar 

  • Hadjidemetriou, J. D.: 1998, ‘Symplectic maps and their use in celestial mechanics'. In: D. Benest and C. Froeschlé (eds), Analysis and Modelling of Discrete Dynamical Systems, Gordon & Breach, The Netherlands.

    Google Scholar 

  • Hadjifotinou, K. G. and Hadjidemetriou, J. D.: 2002, ‘A symplectic mapping model for the study of 2:3 resonant trans-Neptunian motion'. Cel. Mech. Dyn. Astr. 84, 135–157.

    ADS  MathSciNet  Google Scholar 

  • Jewitt, D.: 1999, ‘Kuiper belt objects'. Annu. Rev. Planet. Sci. 27, 287–312.

    ADS  Google Scholar 

  • Knežević, Z., Milani, A., Farinella, P., Froeschlé, Ch. and Froeschlé, C.: 1991, ‘Secular resonances from 2 to 50AU, Icarus 93, 316–330.

    ADS  Google Scholar 

  • Kotoulas, T. A. and Hadjidemetriou, J. D.: 2002, ‘Resonant periodic orbits of trans-Neptunian objects'. Earth Moon Planets 91, 63–93.

    ADS  Google Scholar 

  • Kotoulas, T. A. and Hadjidemetriou, J. D.: 2003, ‘Dynamical evolution of trans-Neptunian objects near the 3/4 resonance'. Earth Moon Planets (submitted).

  • Laskar, J.: 1993, ‘Frequency analysis for multidimensional systems. Global dynamics and diffusion', Phy. D, 67, 257–281.

    ADS  MATH  MathSciNet  Google Scholar 

  • Malhotra, R.: 1996, ‘The phase space near Neptune resonances in the Kuiper Belt'. Astron. J. 111(1), 504–516.

    ADS  MathSciNet  Google Scholar 

  • Melita, M. D. and Brunini, A.: 2000, ‘Comparative study of mean-motion resonances in the trans-Neptunian region'. Icarus 147, 205–219.

    Article  ADS  Google Scholar 

  • Michtchenko, T. and Ferraz-Mello, S.: 1995, ‘Comparative study of the asteroidal motion in the 3/2 and 2/1 resonances'. Astron. Astrophys. 303, 945–963.

    ADS  Google Scholar 

  • Michtchenko, T. and Ferraz-Mello, S.: 2001, ‘Resonant structure of the outer solar system in the neigbourhood of the planets'. Astron. J. 122, 474–481.

    ADS  Google Scholar 

  • Milani, A. and Nobili, A.: 1992, ‘An example of stable chaos in the solar system'. Nature, 357, 569–571.

    Article  ADS  Google Scholar 

  • Morbidelli, A.: 1997, ‘Chaotic diffusion and the origin of comets from the 2/3 resonance in the Kuiper belt'. Icarus 127, 1–12.

    Article  ADS  Google Scholar 

  • Morbidelli, A.: 1999, ‘An overview on the Kuiper belt and on the origin of Jupiter-family comets', Cel.Mech. Dyn. Astr. 72, 129–156.

    ADS  MATH  Google Scholar 

  • Morbidelli, A., Thomas, F. and Moons, M.: 1995, ‘The resonance structure of the Kuiper belt and the dynamics of the first five trans-Neptunian objects'. Icarus 118, 322–340.

    ADS  Google Scholar 

  • Murray, S. D. and Dermott, S. F.: 1999, ‘Solar System Dynamics, Cambridge University Press.

  • Nesvorný, D. and Ferraz-Mello, S.: 1997, ‘On the asteroidal population of the first-order Jovian resonances'. Icarus 130, 247–258.

    Article  ADS  Google Scholar 

  • Nesvorný, D. and Roig, F.: 2000, ‘Mean motion resonances in the trans-neptunian region, I. The 2/3 resonance with Neptune'. Icarus 148, 282–300.

    Article  ADS  Google Scholar 

  • Nesvorný, D. and Roig F.: 2001, ‘Mean motion resonances in the trans-neptunian region, II. The 1/2, 3/4 and weaker resonances'. Icarus 150, 104–123.

    Article  ADS  Google Scholar 

  • Powell, G. E. and Persival, I. C.: 1979, ‘A spectral method for distinguishing regular and irregular motion in Hamiltonian systems'. J. Phys. A: Math. Gen. 12, 2053–2071.

    Article  ADS  Google Scholar 

  • Press, T. R., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P.: 1992, ‘Numerical Recipes in C, Cambridge University Press, UK.

    Google Scholar 

  • Quinn, T. R., Tremaine, S. and Duncan, M. J.: 1990, ‘Planetary perturbations and the origins of short-period comets'. ApJ. 335, 667–679.

    ADS  Google Scholar 

  • Robutel, P. and Laskar, J.: 2001, ‘Frequency map and global dynamics in the solar system'. Icarus 152, 4–28.

    Article  ADS  Google Scholar 

  • Šidlichovský, M.: 1991, ‘Tables of the disturbing function for resonant asteroids'. Bull. Astron. Inst. Czechosl. 42, 116–123.

    ADS  Google Scholar 

  • Šidlichovský, M. and Nesvorný, D.: 1997, ‘Frequency modified Fourier transform and its application to asteroids'. Cel.Mech. Dyn. Astr. 67, 137–148.

    Google Scholar 

  • Voyatzis, G. and Ichtiaroglou, S.: 1992, ‘On the spectral analysis of trajectories in Hamiltonian systems'. J. Phys. A: Math. Gen. 25, 5931–5943.

    Article  ADS  MathSciNet  Google Scholar 

  • Yu, Q. and Tremaine, S.: 1999, ‘The dynamics of Plutinos'. Astron. J. 118, 1873–1881.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotoulas, T., Voyatzis, G. Comparative Study of the 2:3 and 3:4 Resonant Motion with Neptune: An Application of Symplectic Mappings and Low Frequency Analysis. Celestial Mechanics and Dynamical Astronomy 88, 343–363 (2004). https://doi.org/10.1023/B:CELE.0000023391.85690.31

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CELE.0000023391.85690.31

Navigation