Biologia Plantarum

, 48:317 | Cite as

Sucrose Metabolism in Lupinus albus L. Under Salt Stress

  • F.M. FernandesEmail author
  • M.C. Arrabaça
  • L.M.M. Carvalho


Salt stress (50 and 150 mM NaCl) effects on sucrose metabolism was determined in Lupinus albus L. Sucrose synthase (SS) activity increased under salt stress and sucrose phosphate synthase activity decreased. Acid invertase activity was higher at 50 mM NaCl and decreased to control levels at 150 mM NaCl. Alkaline invertase activity increased with the salt stress. Glucose content decreased with salt stress, sucrose content was almost three times higher in plants treated with 150 mM NaCl and fructose content did not change significantly. The most significant response of lupin plants to NaCl excess is the increase of sucrose content in leaves, which is partially due to SS activity increase under salinity.

invertases sucrose phosphate synthase sucrose synthase sugars 


  1. Balibrea, M.E., Cuartero, J., Bolarin, M.C., Perez-Alfocea, F.: Sucrolytic activities during fruit development of Lycopersicon genotypes differing in tolerance to salinity.-Physiol. Plant. 118: 38-46, 2001.CrossRefGoogle Scholar
  2. Bradford, M.M.: A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976.PubMedCrossRefGoogle Scholar
  3. Davies, K. Grierson, D. Edwards, R., Hobson, G.: Salt-stress induces partial ripening of the nor tomato mutant but expression of only some ripening-related genes.-J. Plant Physiol. 139: 140-145, 1991.Google Scholar
  4. Elavumoottil, O.C., Martin, J.P., Moreno, M.L.: Changes in sugars, sucrose synthase activity and proteins in salinity tolerant callus and cell suspension cultures of Brassica oleracea L.-Biol. Plant. 46: 7-12, 2003.CrossRefGoogle Scholar
  5. Fernandes, F.M., Arrabaça, M.C.: Influence of salt stress on growth in Lupinus albus L.-Agron. Lusitana 47: 217-226, 1999.Google Scholar
  6. Fiew, S., Willenbrink, J.: Sugar transport and sugar-metabolizing enzymes in sugar beet storage roots (Beta vulgaris L. ssp. altissima).-J. Plant Physiol. 137: 216-223, 1990.Google Scholar
  7. Guerrier, G.: Hydrolytic activities and metabolite contents during the germination of species sensitive or tolerant to NaCl.-Agrochimica 32: 463-481, 1988.Google Scholar
  8. Hatterscheid, G., Willenbrink, J.: Mikroplattenleser zur enzymatischen Zuckerbestimmung.-BioTec Anal. 4: 46-48, 1991.Google Scholar
  9. Hawker, J.S.: Invertases from leaves of Phaseolus vulgaris plant grown on nutrient solutions containing NaCl.-Aust. J. Plant Physiol. 7: 67-72, 1980.CrossRefGoogle Scholar
  10. Irving, D. E., Hurst, P. L.: Respiration, soluble carbohydrates and enzymes of carbohydrate metabolism in tips of harvested asparagus spears.-Plant Sci. 94: 89-97, 1993.CrossRefGoogle Scholar
  11. Johnson, C. Hall, J.L., Ho, L.C.: Pathways of uptake and accumulation of sugars in tomato fruit.-Ann. Bot. 61: 593-603, 1988.Google Scholar
  12. Kaur, S., Gupta, A.K., Kaur, N.: Effect of kinetin on starch and sucrose metabolising enzymes in salt stressed chickpea seedlings.-Biol. Plant. 46: 67-72, 2003.CrossRefGoogle Scholar
  13. Krishnaraj, S., Thorpe, T.A.: Salinity stress effects on [14C-1]-and [14C-6]-glucose metabolism of a salt-tolerant and salt-susceptible variety of wheat.-Int. J. Plant Sci. 157: 110-117, 1996.CrossRefGoogle Scholar
  14. Munns, R., Greenway, H., Delane, R., Gibbs, J.: Ion concentration and carbohydrate status of the elongating leaf tissue of Hordeum vulgare growing at high external NaCl. II. Cause of the growth reduction.-J. exp. Bot. 33: 574-583, 1982.Google Scholar
  15. Pérez-Alfocea, F., Larher, F.: Sucrose and proline accumulation and sugar efflux in tomato leaf discs affected by NaCl and polyethylene glycol 6000 iso-osmotic stresses.-Plant Sci. 107: 9-15, 1995.CrossRefGoogle Scholar
  16. Poljakoff-Mayber, A.: Biochemical and physiological responses of higher plants to salinity stress.-In: San Prieto, A. (ed.): Biosaline Research. A Look to the Future. Pp. 245-270. Plenum Press, New York 1982.Google Scholar
  17. Roe, J.H.: A colorimetric methods for the determination of fructose in blood and urine.-J. biol. Chem. 107: 15-22, 1934.Google Scholar
  18. Sánchez-Blanco, M.J., Bolarín, M.C., Alarcón, J.J., Torrecillas, A.: Salinity effects on water relations in Lycopersicon esculentum and its wild salt-tolerant relative species L. pennellii.-Physiol. Plant. 83: 269-274, 1991.CrossRefGoogle Scholar
  19. Shaddad, M.A., Radi, A.F., Abdel-Rahman, A.M., Azzoz, M.: Response of seeds of Lupinus termis and Vicia faba to the interactive effects of salinity and ascorbic acid or pyridoxine.-Plant Soil 122: 177-183, 1990.Google Scholar
  20. Weiner, H., McMichael, R.W., Jr., Huber, S.C.: Identification of factors regulating the phosphorylation status of sucrose phosphate synthase in vivo.-Plant Physiol. 99: 1435-1442, 1992.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • F.M. Fernandes
    • 1
    Email author
  • M.C. Arrabaça
    • 2
  • L.M.M. Carvalho
    • 3
  1. 1.Rua Pedro Soares s/nEscola Superior de Educação de BejaBejaPortugal
  2. 2.Departamento de Biologia VegetalFaculdade de Ciências da Universidade de LisboaLisboaPortugal
  3. 3.Escola Superior Agrária de BejaBejaPortugal

Personalised recommendations