Skip to main content
Log in

Effect of High Temperature on Protein Expression in Strawberry Plants

  • Published:
Biologia Plantarum

Abstract

Strawberry plants (Fragaria×ananassa Duch.) cvs. Nyoho and Toyonoka were exposed to temperatures of 20, 33, and 42 °C for 4 h, and protein patterns in leaves and flowers was analyzed by 2-dimensional polyacrylamide gel electrophoresis and immunoblotting. In leaves and flowers of both cultivars, the content of most proteins decreased, but a few new proteins appeared in response to heat stress. These heat shock proteins (Hsps) were detected in the range of 19 – 29 kDa in leaves, and 16 – 26 kDa in flowers. The intensity of a 43 kDa protein spot increased in response to heat stress in Nyoho flowers, but not in Toyonoka flowers. The peaHsp17.7 antibody recognized one band at approximately 26 kDa in leaves, and two bands at approximately 16 and 17 kDa in flowers of both cultivars. These results show that the effects of heat stress on Hsp synthesis in strawberry plants differ between plant organs and between cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, B.G., Rauzada, M., Bouchard, R.A., Frappier, J.R.H., Walden, D.B.: The independent stage-specific expression of the 18 kDa heat shock protein genes during microsporogenesis in Zea mays L.-Dev. Genet. 14: 15-26, 1993.

    Google Scholar 

  • Boston, R.S., Viitanen, P.V., Vierling, E.: Molecular chaperones and protein folding in plants.-Plant mol. Biol. 32: 191-222, 1996.

    Google Scholar 

  • Civello, P.M., Martinez, G.A., Chaves, A.R., Anon, M.C.: Heat treatments delay ripening and postharvest decay of strawberry fruit.-J. agr. Food Chem. 45: 4589-4594, 1997.

    Google Scholar 

  • Coca, M.A., Almoguera, C., Jordano, J.: Expression of sunflower low molecular weight heat shock proteins during embryogenesis and persistence after germination: localization and possible functional implications.-Plant mol. Biol. 25: 479-492, 1994.

    Google Scholar 

  • DeRocher, A.E., Helm, K.W., Lauzon, L.M., Vierling, E.: Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery.-Plant Physiol. 96: 1038-1047, 1991.

    Google Scholar 

  • DeRocher, A.E., Vierling, E.: Developmental control of small heat shock protein expression during pea seed maturation.-Plant J. 5: 93-102, 1994.

    Google Scholar 

  • Fender, S.E., O'Connell, M.A.: Heat shock protein expression in thermotolerant and thermosensitive lines of cotton.-Plant Cell Rep. 8: 37-40, 1989.

    Google Scholar 

  • Forreiter, C., Nover, L.: Heat induced stress proteins and the concept of molecular chaperones.-J. Biosci. 23: 287-302, 1998.

    Google Scholar 

  • Fray, R.G., Lycett, G.W., Grierson, D.: Nucleotide sequence of heat shock and ripening-related cDNA from tomato.-Nucleic Acids Res. 18: 7148, 1990.

    Google Scholar 

  • Gyorgyey, J., Gartner, A., Nemeth, K., Magyar, Z., Hirt, H., Heberle-Bors, E., Dudits, D.: Alfalfa heat shock genes are differentially expressed during somatic embryogenesis.-Plant mol. Biol. 16: 999-1007, 1991.

    Google Scholar 

  • Hartl, F.U.: Molecular chaperones in cellular protein folding.-Nature 381: 571-580, 1996.

    Google Scholar 

  • Howarth, C.J., Skot, K.P.: Detailed characterization of heat shock protein synthesis and induced thermotolerance in seedlings of Sorghum bicolor L.-J. exp. Bot. 45: 1353-1363, 1994.

    Google Scholar 

  • Jorgensen, J.A., Rosenow, D.T., Nguyen, H.T.: Genotypic comparisons of heat shock protein synthesis in sorghum.-Crop Sci. 33: 638-641, 1992.

    Google Scholar 

  • Joshi, C.P., Klueva, N.Y., Morrow, K.J., Nguyen, H.T.: Expression of a unique plastid-localized heat-shock protein is genetically linked to acquired thermotolerance in wheat.-Theor. appl. Genet. 95: 834-841, 1997.

    Google Scholar 

  • Lafayette, P.R., Nagao, R.T., O'Grady, K., Vierling, E., Key, J.L.: Molecular characterization of cDNAs encoding low-molecular-weight heat shock proteins of soybean.-Plant mol. Biol. 30: 159-169, 1996.

    Google Scholar 

  • Lee, G.J., Pokala, N., Vierling, E.: Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea.-J. biol. Chem. 270: 10432-10438, 1995.

    Google Scholar 

  • Lenne, C., Block, M.A., Garin, J., Douce, R.: Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves.-Biochem. J. 311: 805-813, 1995.

    Google Scholar 

  • Lindquist, S.: The heat shock response.-Annu. Rev. Biochem. 55: 1151-1191, 1986.

    Google Scholar 

  • Malik, M.K., Slovin, J.P., Hwang, C.H., Zimmerman, J.L.: Modified expression of a carrot small heat shock protein gene, HSP17.7, results in increased or decreased thermotolerance.-Plant J. 20: 88-99, 1999.

    Google Scholar 

  • Mascarenhas, J.P., Crone, D.E.: Pollen and the heat shock response.-Sex. Plant Reprod. 9: 370-374, 1996.

    Google Scholar 

  • Medina-Escobar, N., Cardenas, J., Munoz-Blanco, J., Caballero, J.L.: Cloning and molecular characterization of a strawberry fruit ripening-related cDNA corresponding a mRNA for a low-molecular-weight heat shock protein.-Plant mol. Biol. 36: 33-42, 1998.

    Google Scholar 

  • Park, S.Y., Shivaji, R., Krans, J.V., Luthe, D.S.: Heat-shock response in heat-tolerant and nontolerant variants of Agrostis palustris Huds.-Plant Physiol. 111: 515-524, 1996.

    Google Scholar 

  • Parsell, D.A., Lindquist, S.: The function of heat-shock proteins in stress-tolerance: degradation and reactivation of proteins.-Annu. Rev. Genet. 27: 437-496, 1993.

    Google Scholar 

  • Preczewski, P.J., Heckathorn, S.A., Downs, C.A., Coleman, J.S.: Photosynthetic thermotolerance is quantitatively and positively correlated with production of specific heat-shock proteins among nine genotypes of Lycopersicon (tomato).-Photosynthetica 38: 127-134, 2000.

    Google Scholar 

  • Quietsch, C., Hong, S.W., Vierling, E., Lindquist, S.: Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis.-Plant Cell 12: 479-492, 2000.

    Google Scholar 

  • Rigola, D., Pe, M.E., Sari-Gorla, M.: A cDNA clone from hazelnut (Corylus avellana L.) encoding a low molecular weight heat shock protein expressed in the reproductive structures.-Sex. Plant Reprod. 11: 29-30, 1998.

    Google Scholar 

  • Ristic, Z., Yang, G., Martin, B., Fullerton, S.: Evidence and association between specific heat shock proteins and the drought and heat tolerance phenotype in maize.-J. Plant Physiol. 153: 497-505, 1997.

    Google Scholar 

  • Suzuki, T.C., Krawitz, D.C., Vierling, E.: The chloroplast small heat shock protein oligomer is not phosphorylated and does not dissociate during heat stress in vivo.-Plant Physiol. 116: 1151-1161, 1998.

    Google Scholar 

  • Tsukaya, H., Takahashi, T., Naito, S., Komeda, Y.: Floral organ-specific and constitutive expression of an Arabidopsis thaliana heat shock Hsp 18.2=GUS fusion gene is retained even after homeotic conversion of flowers by mutation.-Mol. gen. Genet. 237: 26-32, 1993.

    Google Scholar 

  • Vierling, E.: The roles of heat shock proteins in plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 579-620, 1991.

    Google Scholar 

  • Waters, E.: The molecular evolution of the small heat shock proteins in plants.-Genetics 141: 785-795, 1995.

    Google Scholar 

  • Žárský, V., Garrido, D., Eller, N., Tupý, J., Vicente, O., Schoffl, F., Heberle-Bors, E.: The expression of small heat shock gene is activated during induction of tobacco pollen embryogenesis by starvation.-Plant Cell Environ. 18: 139-147, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.A. Ledesma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledesma, N., Kawabata, S. & Sugiyama, N. Effect of High Temperature on Protein Expression in Strawberry Plants. Biologia Plantarum 48, 73–79 (2004). https://doi.org/10.1023/B:BIOP.0000024278.62419.ee

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOP.0000024278.62419.ee

Navigation