Effect of Exogenous Glucose on Photosynthesis in the Diatom Thalassiosira weissflogii Depending on Nitrate Nitrogen Supply and Illumination

  • I. G. Radchenko
  • L. V. Il'yash
  • V. D. Fedorov
Article

Abstract

The rate of photosynthetic carbon fixation (P) in the diatom Thalassiosira weissflogii cultivated in the presence of exogenous glucose in the medium (0–10.56 μg C/l) at different levels of illumination—25, 50, and 100 μE/(m2 s)—was studied as a function of nitrate nitrogen supply. In the diatoms limited in nitrogen and assimilating exogenous glucose, P was found to decrease or increase depending on the light intensity, glucose concentration, and the duration of exposure. In the diatoms assimilating both nitrate nitrogen and glucose, compared to those supplied with nitrates alone, P was higher at the medium and high light intensities and lower at the low light intensity. The interrelation of the processes of carbon and nitrogen metabolism in mixotrophic algae and the ecological role of glucose uptake by phytoplankton are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Amory, A.M., Venlerberghe, G.C., and Turpin, D.H., Demonstration of Both a Photosynthetic and Nonphotosynthetic SO2 Requirement for NH4+ Assimilation in the Green Algae Selenastrum minutum, Plant. Physiol, 1991, no. 1, pp. 192-196.Google Scholar
  2. Antia, N.J., Harrison, J.P., and Oliveira, L., The Role of Dissolved Organic Nitrogen in Phytoplankton Nutrition, Cell Biology, and Ecology, Phycologia, 1991, vol. 30, no. 1, pp.1-89.Google Scholar
  3. Belaya, T.I. and Fedorov, V.D., Hydrological and Hydrochemical Features of the White Sea as Conditions Determining the Level of Its Primary Production, in Kompleksnye issledovaniya prirody okeana (Comprehensive Studies on Ocean Nature), Moscow: Mosk. Gos. Univ., 1972, no. 3, pp.184-211.Google Scholar
  4. Belevich, T.A., Il'yash, L.V., and Matorin, D.N., Influence of Dissolved Organic Matter on Photosynthesis by the Diatom Thalassiosira weissflogii, Vestn. Mosk. Gos. Univ., Ser. Biol., 2001, no. 4, pp. 32-38.Google Scholar
  5. Bennoun, P., Chlororespiration Revisited: Mitochondrial-Plastid Interaction in Chlamydomonas, Biochim. Biophys. Acta, 1994, vol. 1186, no. 1, pp. 59-66.Google Scholar
  6. Butler, E.I., Knox, S., and Liddicoat, M.I., The Relationship between Inorganic and Organic Nutrients in Seawater, J. Mar. Biol. Assoc. UK, 1979, vol. 59, no. 2, pp. 239-250.Google Scholar
  7. Cassie, R.M., Microdistribution and Other Error Components of C14 Primary Production Estimates, Limnol. Oceanogr., 1962, vol. 7, no. 1, pp. 121-130.Google Scholar
  8. Cleveland, J.S. and Perry, M.J., Quantum Yield, Relative Specific Absorption, and Fluorescence in Nitrogen-Limited Chaetoceros gracilis, Mar. Biol., 1987, vol. 94, no. 2, pp. 489-497.Google Scholar
  9. Conover, S.A.M., Partitioning of Nitrogen and Carbon in Cultures of the Marine Diatom Thalassiosira fluviatilis Supplied with Nitrate, Ammonium, or Urea, Mar. Biol., 1975, vol. 32, no. 2, pp. 231-246.Google Scholar
  10. Cournac, L., Guedeney, G., Joet, T., Rumeau, D., Latouche, G., Ceroic, Z., Redding, K., Horvath, E., Medgyesy, P., and Peltier, G., Non-Photochemical Reduction of Intersystem Electron Carries in Chloroplasts of Higher Plants and Algae, in Photosynthesis: Mechanisms and Effects, Garab,G., Ed., Dordrecht: Kluwer, 2000, vol. 3, pp. 1877-1882.Google Scholar
  11. Droop, M.R., Auxotrophy and Organic Compounds in the Nutrition of Marine Phytoplankton, J. Gen. Microbiol., 1957, vol. 16, no. 1, pp. 229-231.Google Scholar
  12. Falkowski, P.G. and Raven, J.A., Aquatic Photosynthesis, Malden, Mass.: Blackwell, 1997.Google Scholar
  13. Falkowski, P.G., Sukenik, A., and Herzig, R., Nitrogen Limitation in Isochrysis galbana (Haptophyceae): 2. Relative Abundance of Chloroplast Proteins, J. Phycol., 1989, vol. 25, no. 2, pp. 471-478.Google Scholar
  14. Fedorov, V.D., Il'yash, L.V., Smirnov, N.A., Sarukhan-Bek,K.K., and Radchenko, I.G., Ecology of the White Sea Plankton: 2. Kinetics of Carbon Uptake in Various Forms by Phytoplankton, Biol. Nauki, 1992, no. 8, pp. 77-89.Google Scholar
  15. Garside, C. and Glover, H.E., Chemiluminescent Measurements of Nitrate Kinetics: 1. Thalassiosira pseudonana (Clone 3H) and Neritic Assembles, J. Plankton Res. (Suppl.), 1991, vol. 13, no. 1, pp. 5-19.Google Scholar
  16. Goldman, J.C. and Glibert, P.M., Comparative Rapid Ammonium Uptake by Four Marine Phytoplankton Species, Limnol. Oceanogr., 1982, vol. 27, no. 4, pp. 814-827.Google Scholar
  17. Guillard, R.R.L. and Ryther, J.H., Studies on Marine Diatoms: 1. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran, Can. J. Microbiol., 1962, vol. 8, no. 2, pp.229-239.Google Scholar
  18. Hellebust, J.A. and Lewin, J., Heterotrophic Nutrition, in The Biology of Diatoms Werner, D., Ed., Oxford: Blackwell, 1977, pp. 169-197.Google Scholar
  19. Huppe, N.C. and Turpin, D.H., Integration of Carbon and Nitrogen Metabolism in Plant and Algal Cells, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1994, vol. 45, no. 3, pp. 577-607.Google Scholar
  20. Il'yash, L.V., Fedorov, V.D., and Sarukhan-Bek, K.K., Dynamics of Biomass and Functional Characteristics of the White Sea Diatoms Skeletonema costatum and Chaetoceros decipiens in Accumulative Cultures, Izv. Ross. Akad. Nauk, Ser. Biol., 1996, no. 4, pp. 472-477.Google Scholar
  21. Il'yash, L.V., Kol'tsova, T.I., Sarukhan-Bek, K.K., and Fedorov, V.D., Ecocenotic Strategies of Phytoplankton Populations in the White Sea, Vestn. Mosk. Gos. Univ., Ser. Biol. 1999, no. 2, pp. 24-31.Google Scholar
  22. Kolber, Z., Zehr, J., and Falkowski, P.G., Effects of Growth Irradiance and Nitrogen Limitation on Photosynthetic Energy Conversion in Photosystem II, Plant Physiol., 1988, vol. 88, no. 4, pp. 923-929.Google Scholar
  23. Kuz'menko, M.I., Miksotrofizm sinezelenykh vodoroslei i ego znachenie (Mixotrophy in Diatoms and Its Significance), Kiev: Naukova Dumka, 1981.Google Scholar
  24. Lemaire, C., Wollman, F.-A., and Bennoun, P., Restoration of Photoautotrophic Growth in a Mutant of Chlamydomonas reinhardtii in Which the Chloroplastic AtpB Gene of ATP Synthase Has a Deletion: An Example of Mitochondrial Dependent Photosynthesis, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, no. 6, pp. 1344-1348.Google Scholar
  25. Lewitus, A.J. and Kana, T.M., Responses of Estuarine Phytoplankton to Exogenous Glucose: Stimulation versus Inhibition of Photosynthesis and Respiration, Limnol. Oceanogr., 1994, vol. 39, no. 1, pp. 182-189.Google Scholar
  26. Mantoura, R.F.C., Owens, N.J.P., and Burkill, P.H., Nitrogen Biogeochemistry and Modelling of Carmarthen Bay Blackburn, T.H. and Sorensen, J., Eds., New York: Wiley, 1988, pp.415-441.Google Scholar
  27. Matorin, D.N., Vasil'ev, I.R., and Vedernikov, V.I., Studies on Photoinhibition of Primary Photosynthetic Reactions in Natural Populations of the Black Sea Phytoplankton, Fiziol. Rast. (Moscow), 1992, vol. 39, no. 3, pp. 455-463.Google Scholar
  28. Nixon, P.J., Chlororespiration, Phil. Trans. Roy. Soc. London, B: Biol., 2000, vol. 355. no. 5, pp. 1541-1547.Google Scholar
  29. Ogava, T. and Aiba, S., Bioenergetic Analysis of Mixotrophic Growth in Chlorella vulgaris and Scenedesmus acutus, Biotechn. Bioengineer., 1981, vol. 23, no. 6, pp. 1121-1132.Google Scholar
  30. Orlov, O.P., Serebryakova, V.N., and Pastushenkova, I.A., The Content and Activity of Ribulose Diphosphate Carboxylase and Ultrastructural Organization of Euglena Cells Depending on the Type of Nutrition, Fiziol. Rast. (Moscow), 1989, vol. 36, no. 2, pp. 262-272.Google Scholar
  31. Petrukhin, Yu.A. and Starkov, S.D., On the Problem of Obligate Photoautotrophy of the Diatom Anacystis nidulans, Zh. Obshch. Biol., 1989, vol. 50, no. 5, pp. 664-672.Google Scholar
  32. Platt, T. and Fillion, C., Spatial Variability of the Productivity: Biomass Ratio for Phytoplankton in Small Marine Basin, Limnol. Oceanogr., 1973, vol. 18, no. 4, pp. 743-749.Google Scholar
  33. Raimbault, P. and Gentilhomme, V., Short-and Long-Term Responses of the Marine Diatom Phaeodactylum tricornutum to Spike Additions of Nitrate at Nanomolar Levels, J. Exp. Mar. Biol. Ecol., 1990, vol. 135, no. 1, pp. 161-176.Google Scholar
  34. Raimbault, P. and Mingazzini, M., Diurnal Variations of Intracellular Nitrate Storage by Marine Diatoms: Effects of Nutritional State, J. Exp. Mar. Biol. Ecol. 1987, vol. 112, no. 2, pp. 217-232.Google Scholar
  35. Rich, J.H., Ducklow, H.W., and Kirchman, D.L., Concentration and Uptake of Neutral Monosaccharides along 140° W in the Equatorial Pacific: Contribution of Glucose to Heterotrophic Bacterial Activity and DOM Flux, Limnol. Oceanogr. 1996, vol. 41, no. 4, pp. 595-604.Google Scholar
  36. Rich, J., Gosselin, M., Sherr, E., Sherr, B., and Kirchman, D.L., High Bacterial Production, Uptake and Concentration of Dissolved Organic Matter in the Central Arctic Ocean, Deep-Sea Res. II, 1997, vol. 44, no. 8, pp. 1645-1663.Google Scholar
  37. Rivkin, R.B. and Putt, M., Heterotrophy and Photoheterotrophy by Antarctic Microalgae: Light-Dependent Incorporation of Amino Acids and Glucose, J. Phycol. 1987, vol. 23, no. 3, pp. 442-452.Google Scholar
  38. Rosen, B.H. and Lowe, R.L., Physiological and Ultrastructural Responses of Cyclotella meneghiniana (Bacillariophyta) to Light Intensity and Nutrient Limitation, J. Phycol. 1984, vol. 20, no. 2, pp. 173-183.Google Scholar
  39. Russel, G.K. and Gibbs, M., Regulation of Photosynthetic Capacity in Chlamydomonas mundana, Plant Physiol., 1966, vol. 41, no. 4, pp. 885-890.Google Scholar
  40. Shubravyi, O.I., An Aquarium with Artificial Seawater for Keeping and Breeding the Primitive Metazoan Trichoplax and Other Small Invertebrates, Zool. Zh. 1983, vol. 12, no. 4, pp. 618-621.Google Scholar
  41. Smith, G.J., Zimmerman, R.C., and Alberte, R.S., Molecular Responses of Diatoms to Variable Levels of Irradiance and Nitrogen Availability: Growth of Skeletonema costatum in Simulated Upwelling Conditions, Limnol. Oceanogr. 1992, vol. 37, no. 5, pp. 989-1007.Google Scholar
  42. Steeman-Nielsen, E., The Use of Radioactive Carbon (C14) for Measuring Organic Production in the Sea, J. Cons. l'Explor. Mer, 1952, vol. 18, no. 2, pp. 117-140.Google Scholar
  43. Stroganov, N.S. and Buzinova, N.S., Prakticheskoe rukovodstvo po gidrokhimii (A Practical Handbook of Hydrochemistry), Moscow: Mosk. Gos. Univ., 1980.Google Scholar
  44. Tamminen, T., Kaitala, S., and Ilyash, L.V., The Heterotrophic Glucose Uptake Potential of Three Marine Dinoflagellates, Publ. Water Res. Inst. Finland: National Board of Waters, 1984, vol. 56, pp. 21-25.Google Scholar
  45. Wiessner, W. and French, C.S., The Forms of Native Chlorophyll in Chlamydobotrys stellata and Their Changes during Adaptation from Photoheterotrophic to Autotrophic Growth, Planta 1970, vol. 94, no. 1, pp. 78-90.Google Scholar
  46. Williams, P.J. and Le, B., Biological and Chemical Aspects of Dissolved Organic Material in Sea-Water, in Chemical Oceanography, Riley, J.P., Ed., London: Academic, 1975, vol. 2, pp. 301-363.Google Scholar
  47. Zvereva, M.G., Klimova, L.A., and Semenenko, V.A., Repression of RNA Synthesis and Disturbances of Photochemical System Activity under the Effect of 2-Deoxy-D-Glucose and Hyperaccumulation of Assimilates in the Cells, Fiziol. Rast. (Moscow), 1980, vol. 27, no. 6, pp. 1218-1223.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • I. G. Radchenko
    • 1
  • L. V. Il'yash
    • 1
  • V. D. Fedorov
    • 1
  1. 1.Biological FacultyMoscow State University, Vorob'evy goryMoscowRussia

Personalised recommendations