Skip to main content
Log in

The Auger Observatory in Argentina

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The Auger Project studies the highest energies known in nature with an emphasis on energies ≥5 × 1019 eV, which are cosmic rays coming from the outer space reaching the Earth's surface with a very low flux. The questions to be elucidated are what are the origin, energy, production mechanism, and chemical composition of these cosmic rays. Auger aims at building two observatories in both the hemispheres and in 2000 the construction of the austral observatory started. Auger's two distinctive features are its exceptional size and its hybrid nature. It spans over an area of 3000 km2 and is constituted by 24 fluorescence detector telescopes and 1600 surface detectors. As such, it will provide a large number of events with less systematic detection uncertainties.

The construction of the Southern Observatory in Argentina is quite advanced and the buildings at the Central Station in Malargüe city are already operational. So are the telescope buildings at Cerros Los Leones and Coihueco (two prototype telescopes were operational at Los Leones, which have now been dismantled), 32 surface detectors, and the telecommunication and data acquisition systems. About 20-hybrid events/months were detected and currently two events/hours are registered with the surface detector array. The detection of hybrid events is the most important issue since it shows that the equipment operates within the design parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greisen, K.: 1996, Phys Rev Lett 16, 748; Zatsepin, G. and Kuzmin, V.: 1966, JETP Lett. 4, 78.

    Article  ADS  Google Scholar 

  2. Takeda, M., Sakaki, N., Honda, K., Chikawa, M., Fukushima, M., Hayashida, N., Inoue, N., Kadota, K., Kakimoto, F., Kamata, K., Kawaguchi, S., Kawakami, S., Kawasaki, Y., Kawasumi, N., Mahrous, A.M., Mase, K., Mizobuchi, S., Morizane, Y., Nagano, M., Ohoka, H., Osone, S., Sasaki, M., Sasano, M., Shimuzi, H.M., Shinozaki, K., Teshima, M., Torii, R., Tsushima, I., Uchihori, Y., Yamamoto, T., Yoshida, S., and Yoshii, H.: for the AGASA Collaboration, Astro-ph/ 0209422 v3, 2002, and accepted Astroparticle Phys.

  3. Abu-Zayyad, T., Archbold, G.C., Bellido, J.A., Belov, K., Belz, J.W., Bergman, R., Boyer, J., Cao, Z., Clay, R.W., Dawson, B.R., Everett, A.A., Girard, J.H.V., Gray, R.C., Hanlon, W.F., Jones, B.F., Jui, C.C.H., Kieda, D.B., Kim, K., Knapp, B., Loh, E.C., Martens, K., Martin, G., Manago, N., Mannel, E.J., Matthews, J.A.J., Matthews, J.N., Meyer, J.R., Moore, S.A., Morrison, P., Moosman, A.N., Mumford, J.R., Munro, M.W., Perera, L., Reil, K., Riehle, R., Roberts, M., Seman, M., Schindel, M.A., Schnetzer, S., Shen, P., Simpson, K.M., Smith, J.D., Sokolsky, P., Song, C., Spinger, R.W., Stokes, B.T., Thomas, S.B., Thomson, G.B., Westerhoff, S., Wiencke, L.R., Vander Veen, T.D., Zech, A., Zhang, X.: for the HiRes Collaboration Astro-ph/0208301 v1, 2002.

  4. The Auger Collaboration: 1996, Pierre Auger Project Design Report (2nd edn.), Revised March 14, 1997.

  5. The Auger Collaboration: Properties and Performance of the Prototype Instrument for the Pierre Auger Observatory. Accepted Nucl. Inst. and Meth.

  6. Bauleo, P., Bonifazi, C.B., Filevich, A., and Reguera, A. for the Pierre Auger Collaboration: 2001, Nucl.Inst.and Meth.A 463, 175–182.

    Article  ADS  Google Scholar 

  7. Allison, P.S., Bauleo, P., Bertou, X., and Bonifazi, C.B.: Surface Detector Calibration in the Engineering Array, Auger Technical Note GAP 2002–028.

  8. Chou A.S.: Vertical Equivalent Muon Study with the Fermilab Tank, Auger Technical Note, GAP 2002–08; Slater, W.E., Tripathi, A., and Arisaka, K. Auger Technical Note, GAP 02–063.

  9. Etchegoyen, A. Track Geometry and Smearing of the Bump Calibration, Auger Technical Note, GAP-2002–078.

  10. Cordero, A., Cantoral, E., Castro, J., Fernandez, A. and Pastrana, R.: Proposal for the Optical System of the Fluorescence Detector of the Auger Project, Auger Technical Note, GAP–96–039.

  11. Biral, A.R.P., Medina Tanco, G.A., Reis, H.C., Landulfo, E., Freitas, A.Z., Teixeira, R. and Escobar, C.O.: Proposal of an Additional Atmospheric Monitoring System for the Auger Site, Auger Technical Note GAP-2002–023.

  12. Filipcic, A., Horvat, M., Veberic, D., Zavrtanik, D. and Zavrtanik, M.: 2003, Astropart.Phys. 18, 501–512. Scanning LIDAR Based Atmospheric Monitoring for Fluorescent Detectors of Cosmic Showers, Mostaf´ a, M.: LIDAR Data An´ alisis Using the Multi-Angle Method.Effects on Shower Profile Reconstruction, Auger Technical Note GAP-2002–068.

    Article  ADS  Google Scholar 

  13. Ave, M., Knapp, J., Marchesini, M., Roth, M., and Watson, A.A.: A Preliminary Analysis of the 11-fold Event 184599, Auger Technical Note GAP-2002–020.

  14. Matthiae, G. for the Pierre Auger Collaboration, The Auger Observatory for High Energy Cosmic Rays, Proceeding of ICHEP-2002.

  15. Pierre Auger Observatory Technical Design Review.Available at www.auger.org/admin <http://www.auger.org/admin>.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Etchegoyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etchegoyen, A. The Auger Observatory in Argentina. Astrophysics and Space Science 290, 379–387 (2004). https://doi.org/10.1023/B:ASTR.0000032536.35456.82

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ASTR.0000032536.35456.82

Navigation