Advertisement

Journal of Porous Materials

, Volume 10, Issue 3, pp 189–200 | Cite as

Computational Simulations for the Assessment of the Mechanical Properties of Glass with Controlled Porosity

  • Valeria Cannillo
  • Cristina Leonelli
  • Tiziano Manfredini
  • Monia Montorsi
  • Aldo R. Boccaccini
Article

Abstract

Porous glass with closed controlled porosity is used as a model system in order to numerically assess the effect of pores on the macroscopic mechanical and fracture behavior of brittle solids. A computational code called OOF, which converts digitalized two-dimensional (2-D) images of materials microstructures into finite element meshes, is adopted, so that the effect of 2-D microstructural features (e.g. pore size and shape) on the global mechanical response of the material can be determined. Firstly, microstructures of porous glass bodies containing isolated pores were considered. These specimens were numerically investigated in terms of fracture initiation and propagation: the numerical model predicted that larger pores initiate fracture, in agreement with experimental results. Then, the effect of porosity on the elastic and fracture properties was thoroughly investigated by means of model two-dimensional microstructures consisting of selected area fractions of pores (equivalent to pore volume fractions in three dimensions) and with prescribed pore shape, orientation and dimensions. In particular, the effect of pore dimension and shape was studied, finding that the critical stress for crack initiation scales with pore dimension and aspect ratio, i.e. oblate and larger pores oriented perpendicularly to the stress direction cause a higher reduction of strength of the specimen. Finally, several 2-D microstructures characterized by different values of area fraction of pores of the same shape were investigated, in order to determine the variation of elastic properties and the fracture response of porous glasses with pore content. The study confirms the suitability of the 2-D OOF code to investigate the mechanical and fracture behavior of porous materials. Issues regarding the limitation of the model due to its 2-D character are also discussed where appropriate.

modeling finite element method numerical simulations glass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.J. Penn, N. McAlford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina, J. Am. Ceram. Soc. 80, 1885 (1997).Google Scholar
  2. 2.
    H. Banno, Effects of shape and volume fraction of closed pores on dielectric, elastic and electromechanical properties of dielectric and piezoelectric ceramics. A theoretical approach, Ceram. Bull. 66, 1332 (1987).Google Scholar
  3. 3.
    J. Wu and L.C. De Jonghe, Alumina-coated hollow glass spheres/alumina composites, J. Mat. Sci. 32, 6075 (1997).Google Scholar
  4. 4.
    G. Liu and D.L. Wilcox Sr., Design guidelines and water extraction synthesis cababilities for hollow ceramic microspheres for low dielectric constant inorganic substrates, Mat. Res. Soc. Symp. Proc. 372, 231 (1995).Google Scholar
  5. 5.
    W.A. Yarbrough, T.R. Gururaja, and L.E. Cross, Materials for IC packaging with very low permittivity via colloidal sol-gel processing, Ceram. Bull. 66, 692 (1987).Google Scholar
  6. 6.
    J.K. Yamamoto, K. Kata, and Y. Shimada, Fabrication of controlled porosity in a tape cast glass ceramic substrate material, Mat. Lett. 8, 278 (1989).Google Scholar
  7. 7.
    R.W. Rice, Porosity of Ceramics (Marcel Dekker, 1998).Google Scholar
  8. 8.
    A.D.Vasilev and S.A. Firstov, Toughening by pores, in Advanced Multilayered and Fibre-Reinforced Composites, edited by Y.M. Haddad (Kluwer Academic Publishers, 1998), p. 371.Google Scholar
  9. 9.
    M. Arnold, A.R. Boccaccini, and G. Ondracek, Theoretical and experimental considerations on the thermal shock resistance of sintered glasses and ceramics using modeled microstructure-property correlations, J. Mat. Sci. 31, 463 (1996).Google Scholar
  10. 10.
    A.R. Boccaccini, Fabrication, microstructural characterization and mechanical properties of glass compacts containing controlled porosity of spheroidal shape, Journal of Porous Materials 6, 369 (1999).Google Scholar
  11. 11.
    A.R. Boccaccini, J.L. Spino, and V. Cannillo, Hermetic glass bodies with controlled porosity: Processing and properties, Ceram. Eng. Sci. Proc. 23(4), 191 (2002).Google Scholar
  12. 12.
    A.P. Roberts and E.J. Garboczi, Elastic properties of model porous ceramics, J. Am. Ceram. Soc. 83, 3041 (2000).Google Scholar
  13. 13.
    C.T. Herakovich and S.C. Baxter, Influence of pore geometry on the effective response of porous media, Journal of Materials Science 34, 1595 (1999).Google Scholar
  14. 14.
    T. Nakamura, G. Qian, and C.C. Berndt, Effects of pores on mechanical properties of plasma-sprayed ceramic coatings, J. Am. Ceram. Soc. 83, 578 (2000).Google Scholar
  15. 15.
    T. Nakamura and Z. Wang, Simulation of crack propagation in porous materials, Transaction of the ASME 68, 242 (2001).Google Scholar
  16. 16.
    I. Doltsinis and R. Dattke, Modeling the damage of porous ceramics under internal pressure, Comput. Methods Appl. Mech. Engrg. 191, 29 (2001).Google Scholar
  17. 17.
    K. Lee and S. Ghosh, A microstructure based numerical method for constitutive modeling of composite and porous materials, Materials Science and Engineering A 272, 120 (1999).Google Scholar
  18. 18.
    K. Lee and S. Ghosh, Small deformation multi-scale analysis of heterogeneous materials with the Voronoi cell finite element model and homogeneization theory, Computational Materials Science 7, 131 (1996).Google Scholar
  19. 19.
    W.C. Carter, S.A. Langer, and E.R. Fuller, The OOF manual: version 1.0, (http://www.ctcms.nist.gov/oof/), 1998.Google Scholar
  20. 20.
    C.H. Hsueh, E.R. Fuller, S.A. Langer, and W.C. Carter, Analytical and numerical analyses for two-dimensional stress transfer, Mater. Sci. Eng. A 268, 1 (1999).Google Scholar
  21. 21.
    C.H. Hsueh, J.A. Haynes, M.J. Lance, P.F. Becher, M.K. Ferber, E.R. Fuller, S.A. Langer, W.C. Carter, and W.R. Cannon, Effects of interface roughness on residual stresses in thermal barrier coatings, J. Am. Ceram. Soc. 82, 1073 (1999).Google Scholar
  22. 22.
    C.-H. Hsueh and E.R. Fuller Jr., Residual stresses in thermal barrier coatings: Effects of interface asperity curvature/height and oxide thickness, Materials Science and Engineering A 283, 46 (2000).Google Scholar
  23. 23.
    A. Zimmermann, E.R Fuller, and J. Rödel, Residual stress distributions in ceramics, J. Am. Ceram. Soc. 82, 3155 (1999).Google Scholar
  24. 24.
    A. Saigal, E.R. Fuller Jr., S.A. Langer, W.C. Carter, M.H. Zimmermann, and K.T. Faber, Effect of interface properties on microcracking of iron titanate, Scripta Materialia 38, 1449 (1998).Google Scholar
  25. 25.
    A. Saigal and E.R. Fuller Jr., Analysis of stresses in aluminum-silicon alloys, Computational Materials Science 21, 149 (2001).Google Scholar
  26. 26.
    V. Cannillo and W.C. Carter, Computation and simulation of reliability parameters and their variations in heterogeneous materials, Acta Materialia 48, 3593 (2000).Google Scholar
  27. 27.
    A. Zimmermann, D.M. Baskin, K.T. Faber, E.R. Fuller Jr., A.J. Allen, and D.T. Keane, Fracture of a textured anisotropic ceramic, Acta Materialia 49, 3231 (2001).Google Scholar
  28. 28.
    A. Zimmermann, W.C. Carter, and E.R Fuller, Damage evolution during microcracking of brittle solids, Acta Mater. 49, 127 (2001).Google Scholar
  29. 29.
    V.R. Vedula, S.J. Glass, D.M. Saylor, G.S. Rohrer, W.C. Carter, S.A. Langer, and E.R. Fuller, Residual-stress prediction in polycristalline alumina, J. Am. Ceram. Soc. 84(12), 2947 (2001).Google Scholar
  30. 30.
    V. Cannillo, C. Leonelli, and A.R. Boccaccini, Numerical models for thermal residual stresses in Al2O3 platelets/borosilicate glass matrix composites, Materials Science and Engineering A A323, 246 (2002).Google Scholar
  31. 31.
    V. Cannillo, A. Corradi, C. Leonelli, and A.R. Boccaccini, A simple approach for determining the “in-situ” fracture toughness of ceramic platelets used in composite materials by numerical simulations, Journal of Materials Science Letters 20, 1889 (2001).Google Scholar
  32. 32.
    V. Cannillo, G.C. Pellacani, C. Leonelli, and A.R. Boccaccini, Numerical modelling of the fracture behaviour of a glass matrix composite reinforced with alumina platelets, Composites Part A 34, 43 (2003).Google Scholar
  33. 33.
    M.F. Horstmeyer, M.M. Matalanis, A.M. Sieber, and M.L. Botos, Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence, International Journal of Plasticity 16, 979 (2000).Google Scholar
  34. 34.
    V. Kouznetsova, W.A.M. Brekelmans, and F.P.T. Baaijens, An approach to micro-macro modeling, Computational Mechanics 27, 37 (2001).Google Scholar
  35. 35.
    T. Schneider, P. Greil, and G. Schober, Strength modeling of brittle materials with two-and three-dimensional pore structures, Computational Materials Science 16, 98 (1999).Google Scholar
  36. 36.
    A.R. Boccaccini, J. Bossert, M. Bücker, and E.E. Mombello, Berechnung der Bruchfestigkeit von porö senWerkstoffen unter Betrachtungen von Kerbspannungen, Materialwissenschaft u. Werkstofftechnik 28, 1 (1997).Google Scholar
  37. 37.
    A.R. Boccaccini, Influence of stress concentrations on the mechanical property-porosity correlation in porous materials, J. Mat. Sci. Lett. 17, 1273 (1998).Google Scholar
  38. 38.
    K.R. Janowsky and R.C. Rossi, Elastic behaviour if MgO matrix composites, J. Am. Ceram. Soc. 50, 599 (1967).Google Scholar
  39. 39.
    E.A. Dean, Elastic moduli of porous sintered materials as modeled by a variable aspect-ratio self consistent oblate spheroidal inclusion theory, J. Am. Ceram. Soc. 66, 847 (1983).Google Scholar
  40. 40.
    L.F. Nielsen, Elasticity and damping of porous materials and impregnated materials, J. Am. Ceram. Soc. 67, 93 (1983).Google Scholar
  41. 41.
    K.A. Snyder, E.J. Garboczi, and A.R. Day, The elastic-moduli of simple 2-dimensional isotropic composites—Computer-simulation and effective medium theory, J. Appl. Phys. 72(12), 5948 (1992).Google Scholar
  42. 42.
    A.R. Boccaccini, G. Ondracek, P. Mazilu, and D. Windelberg, On the effective Young's modulus of elasticity for porous materials: Microstructure modelling and comparison between calculated and experimental values, J. Mech. Behavior Mat. 4(2), 119 (1993).Google Scholar
  43. 43.
    E. Ryskewitch, Compression strength of porous alumina and zirconia—9th communication to ceramography, J. Am. Ceram. Soc. 36, 65 (1953).Google Scholar
  44. 44.
    Y. Inagaki, T. Ohji, and S. Kanzaki, Fracture energy of a aligned porous silicon nitride, J. Am. Ceram. Soc. 83, 1807 (2000).Google Scholar
  45. 45.
    L. Coronel, J.P. Jernot, and F. Osterstock, Microstructure, mechanical properties of sintered glass, J. Mat. Sci. 25, 4866 (1990).Google Scholar
  46. 46.
    J. Wang, L.J. Vandeperre, R.J. Stearn, and W.J. Clegg, The fracture energy of porous ceramics, Key Eng. Mat. 206-213, 2025 (2002).Google Scholar
  47. 47.
    J. Wang, L.J. Vandeperre, R.J. Stearn, and W.J. Clegg, Pores and cracking in ceramics, Journal of Ceramic Processing Research 2, 27 (2001).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Valeria Cannillo
    • 1
  • Cristina Leonelli
    • 1
  • Tiziano Manfredini
    • 1
  • Monia Montorsi
    • 1
  • Aldo R. Boccaccini
    • 2
  1. 1.Department of Materials and Environmental EngineeringUniversity of Modena and Reggio Emilia, Via Vignolese 905ModenaItaly
  2. 2.Department of MaterialsImperial College LondonLondonUK

Personalised recommendations