Skip to main content

Shaping of Receptive Fields in the Visual Cortex During Retinal Maturation

Abstract

We present a computational study of the formation of simple-cell receptive field patterns in the primary visual cortex. Based on the observation that the spatial frequency of the retinal filter increases postnatally, our results explain differences in the time course of the development of orientation selectivity in binocularly deprived and normally reared kittens. Development after eye-opening in normal animals is modelled by training with natural images, whereas in the case of binocular deprivation noise-like stimulation continues. Further, it is shown that different orientation selectivities are obtained for network models trained with natural images in contrast to random phase images of identical second order statistics. The latter finding suggests that higher-order statistics of the inputs influences development of primary visual cortex. Finally, we search for quantities that identify possible signatures of natural image statistics in order to specify the amount of constructiveness that visual experience has on the formation of receptive fields.

This is a preview of subscription content, access via your institution.

References

  1. Ahalt SC, Krishnamurthy AK, Chen P, Melton DE (1990) Competitive learning algorithms for vector quantization. Neural Networks 3: 277-290.

    Google Scholar 

  2. Atick JJ, Redlich AN (1992) What does the Retina Know about Natural Scenes? Neural Computation 4: 196-210.

    Google Scholar 

  3. Bauer HU, Brockmann D, Geisel T (1997) Analysis of ocular dominance pattern formation in a high-dimensional self-organizing map model Network 8: 17-33.

    Google Scholar 

  4. Bauer H-U, Der R, Herrmann M (1996) Controlling the magnification factor of self-organizing feature maps. Neural Computation 8: 757-771.

    Google Scholar 

  5. Bell AJ, Sejnowski T (1997) Edges are the independent components of natural images. Advances in Neural Information Processing Systems 9: 831-837.

    Google Scholar 

  6. Braastad BO, Heggelund P (1985) Development of spatial receptive-field organization and orientation selectivity in kitten striate cortex. Journal of Neurophysiology 53: 1158-1179.

    Google Scholar 

  7. Burton GJ, Moorhead IR (1987) Color and spatial structure in natural scenes. Appl. Opt. 26: 157-170.

    Google Scholar 

  8. Chapman B, Stryker MP (1993) Development of orientation selectivity in ferret visual cortex and effects of deprivation. J. Neurosci. 13: 5251-5262.

    Google Scholar 

  9. Crair MC, Gillespie D, Stryker MP (1998) The role of visual experience in the development of columns in cat visual cortex. Science 279: 566-570.

    Google Scholar 

  10. Dreher B et al. (1983) Evidence that the early postnatal reduction in the number of rat retinal cells is due to a wave of ganglion cell death. Neurosci. Lett. 36: 255-260.

    Google Scholar 

  11. Erwin E, Obermayer K, Schulten K (1995) Models of orientation and ocular dominance columns in the visual cortex: A critical comparison. Neural Computation 7: 425-468.

    Google Scholar 

  12. Hamasaki DI, Flynn JT (1976) Physiological properties of retinal ganglion cells of 3-week old kittens. Vision Res. 17: 275-288.

    Google Scholar 

  13. Holub RA, Morton-Gibson M (1981) Response of visual cortical neurons of the cat to moving sinusoidal gratings: Response-contrast functions and spatiotemporal interactions. Journal of Neurophysiology 46: 1244-1259.

    Google Scholar 

  14. Hubel DH, Wiesel TN (1963) Receptive fields of cells in striate cortex of very young, visually unexperienced kittens. Journal of Neurophysiology 26: 994-1002.

    Google Scholar 

  15. Ikeda H, Tremain KE (1978) The development of spatial resolving power of lateral geniculate neurons in kittens. Exp. Brain Res. 31: 193-206.

    Google Scholar 

  16. Jones J, Palmer L (1987) The two-dimensional spatial structure of simple receptive fields in Cat striate cortex. Journal of Neurophysiology 58: 1233-1258.

    Google Scholar 

  17. Jones J, Palmer L (1987) An evaluation of the two-dimensional Gabor filter model of simple receptive fields in Cat striate cortex. Journal of Neurophysiology 58: 1233-1258.

    Google Scholar 

  18. Kohonen T (1995) Self-Organizing Maps. Springer-Verlag, London.

    Google Scholar 

  19. Kakabadze IM (1985) A comparative electron microscope study of neurons in the cat visual cortex during the postnatal ontogenesis. Tsitologija 27: 1123-1128 (in Russian).

    Google Scholar 

  20. Kurata K, Shirakura J (1993) A self-organizing model of topographic mappings between two nerve fields with excitatory waves. Proc. of Int. Joint Conf. Neur. Net. 463-466.

  21. Law CC, Cooper LN (1994) Formation of receptive fields in realistic visual environments according to the Bienenstock, Cooper, and Munro (BCM) theory, Proc. Natl. Acad. Sci. 91: 7797-7801.

    Google Scholar 

  22. Lee DD, Seung HS (1999) Learning the parts of objects by nonnegative matrix factorization. Nature 401: 788-791.

    Google Scholar 

  23. Linde Y, Buzo A, Gray RM (1980) An algorithm for vector Quantizer design. IEEE Transactions on Communications 28: 84-95.

    Google Scholar 

  24. Löwel S (1998) The layout of orientation and ocular dominance domains in area 17 of strabismic cats. Eur. J. Neurosci. 10: 2629-2643.

    Google Scholar 

  25. Lübke J, Albus K (1989) The development of layer VI pyramidal neurons in the cats striate cortex, as visualized by intracellular Lucifer yellowinjections in aldehyde-fixed tissue. Dev. Brain. Res. 45: 29-38.

    Google Scholar 

  26. Mayer N, Herrmann JM, Geisel T (1998) A cortical interpretation of ASSOMs. In: Proc. Int. Conf. Art. Neural Networks (ICANN), Vol. 2, pp. 961-966.

    Google Scholar 

  27. Mayer N, Herrmann JM, Geisel T (2000) Retinotopy and spatial phase in topographic maps. In: Neurocomputing, Vols. 32/33, pp. 447-452.

    Google Scholar 

  28. Miller KD (1994) A model for the development of simple-cell receptive fields and the arrangement of orientation columns through activity-dependent competition between On-and Off-center inputs. Journal of Neuroscience 14: 409-441.

    Google Scholar 

  29. Nelder JA, Mead RA (1965) A simplex method for function minimization. Comput. J. 7: 308-313.

    Google Scholar 

  30. Norcia AM, Tyler CW (1985) Spatial frequency sweep VEP: Visual acuity during the first year of life. Vision Res. 25: 1399-1408.

    Google Scholar 

  31. Obermayer K, Ritter H, Schulten K (1990) A principle for the formation of the spatial structure of cortical feature maps. Proc. Nat. Acad. Sci. USA 87: 8345-8349.

    Google Scholar 

  32. Ohzawa I, Freeman RD (1988) Binocularly deprived cats: Binocular tests of cortical cells show regular patterns of interaction. Journal of Neuroscience 8: 2507-2516.

    Google Scholar 

  33. Olshausen B, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 78: 315-333.

    Google Scholar 

  34. Raczowski D, Uhlrich DJ, Sherman SM (1988) Morphology of retinoculate X and Y axon arbors in cats raised with binocular lid suture. Journal of Neurophysiology 60: 2152-2167.

    Google Scholar 

  35. Riesenhuber M, Bauer HU, Brockmann D, Geisel T (1998) Breaking rotational symmetry in a self-organizing map model for orientation map development. Neural Computation 10: 717-730.

    Google Scholar 

  36. Ruderman D (1997) Origins of scaling in natural images. Vision Research 37: 3385-3398

    Google Scholar 

  37. Rusoff AC, Dubin MW (1977) Development of receptive-field properties retinal ganglion cells in kittens. Journal of Neurophysiology 40: 1188-1198.

    Google Scholar 

  38. Schiller PH, Finlay BL, Volman SF (1976) Quantitative studies of single-cell properties in monkey striate cortex. I. spatiotemporal organization of receptive fields. Journal of Neurophysiology 39: 1288-1319.

    Google Scholar 

  39. Sengpiel F, Stawinski P, Bonhoeffer T (1999). Influence of experience on orientation maps in cat visual cortex. Nature Neuroscience 2: 727-732.

    Google Scholar 

  40. Sirosh J, Miikkulainen R (1997) Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex. Neural Computation 9: 577-594.

    Google Scholar 

  41. Smith DS, Lorber R, Stanford LS, Loop MS (1980) Visual acuity following binocular deprivation in the cat. Brain Research 183: 1-11.

    Google Scholar 

  42. Swindale NV (1996) The development of topography in the visual cortex: A review of models. Network 7: 161-247.

    Google Scholar 

  43. Tavazoie SF and Reid RC (2000) Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development. Nat. Neurosci. 3(6): 608-616.

    Google Scholar 

  44. van Hateren JH, van der Schaaf A (1998) Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. Royal Soc. Lond. B 265: 359-366.

    Google Scholar 

  45. van Hateren JH, Natural stimuli collection. WWW: http://hlab.phys.rug.nl/archive.html.

  46. Wässle H, Boycott BB (1991) Functional architecture of the mammalian retina. Physiol. Rev. 71: 447-480.

    Google Scholar 

  47. Wiesel TN, Hubel DN (1974) Ordered arrangement of orientation columns in monkeys lacking visual experience. J. Comp. Neur. 158: 307-318.

    Google Scholar 

  48. Wolf F, Geisel T (1998) Spontaneous pinwheel annihilation during visual development. Nature 395: 73-76.

    Google Scholar 

  49. Wolf F, Pawelzik K, Geisel T (1994) Linear and nonlinear evolution in maps of orientation preference. In: FH Eeckman, J Bower, eds., Computation and Neural Systems. Kluwer Academic Publishers, Boston, MA, pp. 94-101.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mayer, N., Herrmann, J.M. & Geisel, T. Shaping of Receptive Fields in the Visual Cortex During Retinal Maturation. J Comput Neurosci 15, 307–320 (2003). https://doi.org/10.1023/A:1027426526246

Download citation

  • visual cortex
  • neural maps
  • receptive field development
  • natural images
  • retinal filter