Skip to main content

Early Cortical Orientation Selectivity: How Fast Inhibition Decodes the Order of Spike Latencies

Abstract

Following a flashed stimulus, I show that a simple neurophysiological mechanism in the primary visual system can generate orientation selectivity based on the first incoming spikes. A biological model of the lateral geniculate nucleus generates an asynchronous wave of spikes, with the most strongly activated neurons firing first. Geniculate activation leads to both the direct excitation of a cortical pyramidal cell and disynaptic feed-forward inhibition. The mechanism provides automatic gain control, so the cortical neurons respond over a wide range of stimulus contrasts. It also demonstrates the biological plausibility of a new computationally efficient neural code: latency rank order coding.

This is a preview of subscription content, access via your institution.

References

  • Adorjan P, Levitt JB, Lund JS, Obermayer K (1999) A model for the intracortical origin of orientation preference and tuning in macaque striate cortex. Visual Neuroscience 16: 303-318.

    Google Scholar 

  • Anderson JS, Carandini M, Ferster D (2000) Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. Journal of Neurophysiology 84: 909-926.

    Google Scholar 

  • Berman NJ, Douglas RJ, Martin KA, Whitteridge D (1991) Mechanisms of inhibition in cat visual cortex. Journal of Physiology 440: 697-722.

    Google Scholar 

  • Borg-Graham LJ, Monier C, Fregnac Y (1998) Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393: 369-373.

    Google Scholar 

  • Buracas GT, Zador AM, DeWeese MR, Albright TD (1998) Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20: 959-969.

    Google Scholar 

  • Carandini M, Ferster D (1997) A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. Science 276: 949–952.

    Google Scholar 

  • Carandini M, Heeger DJ, Movshon JA (1997) Linearity and normalization in simple cells of the macaque primary visual cortex. Journal of Neuroscience 17: 8621-8644.

    Google Scholar 

  • Celebrini S, Thorpe S, Trotter Y, Imbert M(1993) Dynamics of orientation coding in area V1 of the awake primate.Visual Neuroscience 10: 811-825.

    Google Scholar 

  • Delorme A, Gautrais J, Van Rullen R, Thorpe SJ (1999) SpikeNET: A simulator for modeling large networks of integrate and fire neurons. Neurocomputing 26/27: 989-996.

    Google Scholar 

  • Delorme A, Richard G, Fabre-Thorpe M (2000) Ultra-rapid categorisation of natural scenes does not rely on colour cues: A study in monkeys and humans. Vision Research 40: 2187-2200.

    Google Scholar 

  • Delorme A, Thorpe S (2001) Face recognition using one spike per neuron: Resistance to image degradation. Neural Network 14: 795-804.

    Google Scholar 

  • Delorme A, Van Rullen R, Thorpe SJ (1999) Rapid object recognition based on asynchronous feed-forward processing. Perception 28: 128-129.

    Google Scholar 

  • Destexhe A (1997) Conductance-based integrate-and-fire models. Neural Computation 9: 503-514.

    Google Scholar 

  • Douglas RJ, Martin KA, Whitteridge D(1988) Selective responses of visual cortical cells do not depend on shunting inhibition. Nature 332: 642-644.

    Google Scholar 

  • Early Cortical Orientation Selectivity 365

  • Ferster D, Jagadeesh B (1992) EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording. Journal of Neuroscience 12: 1262-1274.

    Google Scholar 

  • Ferster D, Miller KD (2000) Neural mechanisms of orientation selectivity in the visual cortex. Annual Review of Neuroscience 23: 441-471.

    Google Scholar 

  • Gabbott PL, Martin KA, Whitteridge D (1988) Evidence for the connections between a clutch cell and a corticotectal neuron in area 17 of the cat visual cortex. Proceedings of the Royal Society, London, Series B 233: 385-391.

    Google Scholar 

  • Gautrais J, Thorpe S (1998) Rate coding versus temporal order coding: A theoretical approach. Biosystems 48: 57-65.

    Google Scholar 

  • Gawne TJ, Kjaer TW, Richmond BJ (1996) Latency: Another potential code for feature binding in striate cortex. Journal of Neurophysiology 76: 1356-1360.

    Google Scholar 

  • Hines M (1989) A program for simulation of nerve equations with branching geometries. International Journal of Biomedical Computation 24: 55-68.

    Google Scholar 

  • Hirsch JA, Alonso, JM, Reid RC, Martinez LM (1998) Synaptic integration in striate cortical simple cells. Journal of Neuroscience 18: 9517-9528.

    Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology (London) 160: 106-154.

    Google Scholar 

  • Jaffe DB, Carnevale NT (1999) Passive normalization of synaptic integration influenced by dendritic architecture. Journal of Neurophysiology 82: 3268-3285.

    Google Scholar 

  • Keysers C, Xiao, DK, Foldiak P, Perrett DI (2001) The speed of sight. Journal of Cognitive Neuroscience 13: 90-101.

    Google Scholar 

  • Maex R, Orban, GA (1996) Model circuit of spiking neurons generating directional selectivity in simple cells. Journal of Neurophysiology 75: 1515-1545.

    Google Scholar 

  • Mainen ZF, Sejnowski, TJ (1995) Reliability of spike timing in neocortical neurons. Science 268: 1503-1506.

    Google Scholar 

  • Maunsell JH, Ghose GM, Assad JA, McAdams CJ, Boudreau CE, Noerager BD (1999) Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Visual Neuroscience 16: 1-14.

    Google Scholar 

  • Mechler F, Victor JD, Purpura KP, Shapley R (1998) Robust temporal coding of contrast by V1 neurons for transient but not for steady-state stimuli. Journal of Neuroscience 18: 6583–6598.

    Google Scholar 

  • Meister M, Berry MJ, 2nd (1999). The neural code of the retina. Neuron 22(3): 435-450.

    Google Scholar 

  • Mel BW, Ruderman DL, Archie KA (1998) Translation-invariant orientation tuning in visual “complex” cells could derive from intradendritic computations. Journal of Neuroscience 18: 4325–4334.

    Google Scholar 

  • Nelson S, Toth L, Sheth B, Sur M (1994) Orientation selectivity of cortical neurons during intracellular blockade of inhibition. Science 265: 774-777.

    Google Scholar 

  • Perkel DH, Bullock TH (1968) Neural coding. Neuroscience Research Program Bulletin 6: 221-348.

    Google Scholar 

  • Reich DS, Victor JD, Knight BW, Ozaki T, Kaplan E(1997) Response variability and timing precision of neuronal spike trains in vivo. Journal of Neurophysiology 77: 2836-2841.

    Google Scholar 

  • Reinagel P, Godwin D, Sherman SM, Koch C (1999) Encoding of visual information by LGN bursts. Journal of Neurophysiology 81: 2558-2569.

    Google Scholar 

  • Sompolinsky H, Shapley R (1997) New perspectives on the mechanisms for orientation selectivity. Current Opinion in Neurobiology 7: 514-522.

    Google Scholar 

  • Suarez H, Koch C, Douglas R (1995) Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit. Journal of Neuroscience 15: 6700-6719.

    Google Scholar 

  • Thorpe S, Fize D, Marlot C. (1996). Speed of processing in the human visual system. Nature 381: 520-522.

    Google Scholar 

  • Thorpe SJ (1990) Spike arrival times: A highly efficient coding scheme for neural networks. In: R Eckmiller, G Hartman, G Hauske, eds. Parallel Processing in Neural Systems. Elsevier, Amsterdam.

    Google Scholar 

  • Troyer TW, Krukowski AE, Priebe NJ, Miller KD (1998) Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. J Neuroscience 18: 5908-5927.

    Google Scholar 

  • Van Rullen R, Thorpe SJ (2001) Rate coding versus temporal order coding: What the retinal ganglion cells tell the visual cortex. Neural Computation 13: 1255-1283.

    Google Scholar 

  • Vidyasagar TR, Pei X, Volgushev M (1996) Multiple mechanisms underlying the orientation selectivity of visual cortical neurones. Trends in Neuroscience 19: 272-277.

    Google Scholar 

  • Volgushev M, Vidyasagar TR, Pei X (1995) Dynamics of the orientation tuning of postsynaptic potentials in the cat visual cortex. Visual Neuroscience 12: 621-628.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Delorme, A. Early Cortical Orientation Selectivity: How Fast Inhibition Decodes the Order of Spike Latencies. J Comput Neurosci 15, 357–365 (2003). https://doi.org/10.1023/A:1027420012134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027420012134

  • shunting inhibition
  • visual cortex
  • rank order coding
  • population coding
  • contrast invariance
  • single spike