Designs, Codes and Cryptography

, Volume 9, Issue 1, pp 61–70 | Cite as

Concerning Difference Matrices

  • Charles J. Colbourn
  • Donald L. Kreher


Several new constructions for difference matrices are given. One classof constructions uses pairwise balanced designs to develop newdifference matrices over the additive group of GF (q). A second class of constructions gives difference matrices overgroups whose orders are not (necessarily) prime powers.

Difference matrices pairwise balanced designs orthogonal arrays 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. R. Abel and Y. W. Cheng, Some new MOLS of order 2 n p for p a prime power, Austral. J. Combin., 10 (1994) pp. 175–186.Google Scholar
  2. 2.
    T. Beth, D. Jungnickel, and H. Lenz, Design Theory, Cambridge University Press (1986).Google Scholar
  3. 3.
    W. de Launey, A survey of generalized Hadamard matrices and difference matrices D (k, λ; G) with large k, Util. Math., 30 (1986) pp. 5–29.Google Scholar
  4. 4.
    W. de Launey, On difference matrices, transversal designs, resolvable transversal designs, and large sets of mutually orthogonal F-squares, J. Stat. Plan. Infer., 16 (1987) pp. 107–125.Google Scholar
  5. 5.
    S. Furino, Existence results for near resolvable designs, J. Comb. Designs, 3 (1995) pp. 101–113.Google Scholar
  6. 6.
    A. S. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal Arrays, to appear.Google Scholar
  7. 7.
    D. Jungnickel, On difference matrices, resolvable transversal designs and generalized Hadamard matrices, Math. Z., 167 (1979) pp. 49–60.Google Scholar
  8. 8.
    R. Mathon and A. Rosa, Tables of parameters of BIBDs with r · 41 including Existence, Enumeration, and Resolvability Results, Ann. Disc. Math., 26 (1985) pp. 275–308.Google Scholar
  9. 9.
    S. S. Shrikhande, Generalized Hadamard matrices and orthogonal arrays of strength 2, Canad. J. Math.,16 (1964) pp. 131–141.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Charles J. Colbourn
    • 1
  • Donald L. Kreher
    • 2
  1. 1.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCANADA
  2. 2.Department of Mathematical SciencesMichigan Technological UniversityHoughtonU.S.A

Personalised recommendations