Skip to main content
Log in

Reactive Oxygen and Nitrogen Species Regulate Mitochondrial Ca2+ Homeostasis and Respiration

  • Published:
Bioscience Reports

Abstract

The reduction of molecular oxygen to water provides most of the biologically useful energy. However, oxygen reduction is a mixed blessing because incompletely reduced oxygen species such as superoxide or peroxides are quite reactive and can, when out of control, cause damage. In mitochondria, where most of the oxygen utilized by eukaryotic cells is reduced, the dichotomy of oxygen shows itself best. Thus, reactive oxygen is a threat to them, as is evident from oxidative damage to mitochondrial lipids, proteins, and nucleic acids. Reactive oxygen, in the form of peroxides, also serves useful functions in mitochondria. This is exemplified by the control of mitochondrial and cellular calcium homeostasis, whose understanding has improved greatly during the last few years. An exciting new aspect is the discovery that nitric oxide and congeners have an enormous impact on mitochondria. Physiological concentrations of nitrogen monoxide (NO) at physiological cellular oxygen pressure inhibit cytochrome oxidase and thereby respiration. A transient inhibition of cytochrome oxidase by NO appears to be used in at least some forms of cell signalling. Peroxynitrite, the product of the reaction between superoxide and NO, can stimulate the specific calcium release pathway from mitochondria by oxidizing some vicinal thiols in mitochondria. There is evidence mounting that mitochondrial calcium handling and its modulation by reactive oxygen and nitrogen species is important for necrotic and apoptotic cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Albina, J. E., Cui, S., Mateo, R. B. and Reichner, J. S. (1993) J. Immunol. 150:5080–5085.

    PubMed  Google Scholar 

  • Ankarcrona, M., Dypbukt, J. M., Brüne, B. and Nicotera, P. (1994) Exp. Cell Res. 213:172–177.

    PubMed  Google Scholar 

  • Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A. and Nicotera, P. (1995) Neuron 15:961–973.

    PubMed  Google Scholar 

  • Bates, T. E., Loesch, A., Burnstock, G. and Clark J. B. (1995) Biochem. Biophys. Res. Commun. 213:896–900.

    PubMed  Google Scholar 

  • Beaver, J. P. and Waring, P. (1994) Immunol. Cell Biol. 72:489–499.

    PubMed  Google Scholar 

  • Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A. and Freeman, B. A. (1990) Proc. Natl. Acad. Sci. USA 87:1620–1624.

    PubMed  Google Scholar 

  • Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. and Lipton, S. A. (1995) Proc. Natl. Acad. Sci. USA 92:7162–7166.

    PubMed  Google Scholar 

  • Bornkamm, G. W. and Richter, C. (1994) in: Current Topics in Microbiology and Immunology 194, Volume: Mechanisms in B-Cell Neoplasia (eds. M. Potter, and F. Melchers). pp. 323–330. Springer Verlag, Berlin.

    Google Scholar 

  • Brown, G. C. (1995) FEBS Lett. 369:136–139.

    PubMed  Google Scholar 

  • Brown, G. C. and Cooper, C. E. (1994) FEBS Lett. 356:295–298.

    PubMed  Google Scholar 

  • Brown, G. C., Bolaños, J. P., Heales, S. J. R. and Clark, J. B. (1995) Neurosci. Lett. 193:201–204.

    PubMed  Google Scholar 

  • Brudvig, O. W., Stevens, O. H. and Chan, O. I. (1980) Biochemistry 19:5275–5285.

    PubMed  Google Scholar 

  • Brüne, B., Dimmeler, S., Vedia, L. M. Y. and Lapetina, E. G. (1994) Life Sci. 54:61–70.

    PubMed  Google Scholar 

  • Busciglio, J. and Yanker, B. A. (1995) Nature 378:776–779.

    PubMed  Google Scholar 

  • Buttke, T. M. and Sandstrom, P. A. (1994) Immunol. Today 15:7–10.

    PubMed  Google Scholar 

  • Cadenas, E. (1989) Annu. Rev. Biochem. 58:79–110.

    PubMed  Google Scholar 

  • Carafoli, E. (1987) Annu. Rev. Biochem. 56:395–433.

    PubMed  Google Scholar 

  • Carr, G. J. and Ferguson, S. J. (1990) Biochim. Biophys. Acta 1017:57–62.

    PubMed  Google Scholar 

  • Castro, L., Rodriguez, M. and Radi, R. (1994) J. Biol. Chem. 269:29405–29415.

    PubMed  Google Scholar 

  • Chacon, E. and Acosta, D. (1991) Toxicol. Appl. Pharmacol. 107:117–128.

    PubMed  Google Scholar 

  • Chance, B., Sies, H. and Boveris, A. (1979) Physiol. Rev. 59:527–605.

    PubMed  Google Scholar 

  • Chen, L.-B. (1988) Annu. Rev. Cell Biol. 4:155–181.

    PubMed  Google Scholar 

  • Clarkson, R. B., Norby, S. W., Smirnov, A., Boyer, S., Vahidi, N., Nims, R. W. and Wink, D. A. (1995) Biochim. Biophys. Acta 1243:496–502.

    PubMed  Google Scholar 

  • Cleeter, M. W. J., Cooper, J. M., Darley-Usmar, V. M., Moncada, S. and Schapira, A. H. V. (1994) FEBS Lett. 345:50–54.

    PubMed  Google Scholar 

  • Crow, J. P. and Beckman, J. S. (1995) Adv Pharmacol; 34:17–43.

    PubMed  Google Scholar 

  • Cui, S., Reichner, J. S., Mateo, R. B. and Albina, J. E. (1993) Cancer Res. 54:2462–2467.

    Google Scholar 

  • Dawson, T. L., Gores, G. J., Nieminen, A.-L., Herman, B. and Lemasters, J. J. (1993) Am. J. Physiol. 264:C961–C967.

    PubMed  Google Scholar 

  • Forman, H. J. and Kennedy, J. (1976) Arch. Biochem. Biophys. 217:411–421.

    Google Scholar 

  • Garcia, I., Martinou, I., Tsujimoto, Y. and Martinou, J.-C. (1992) Science 258:302–304.

    PubMed  Google Scholar 

  • Goossens, V., Grooten, J. and Fiers, W. (1996) J. Biol. Chem. 271:192–196.

    PubMed  Google Scholar 

  • Hajnóczky, G., Robb-Gaspers, L. D., Sietz, M. and Thomas, A. P. (1995) Cell 82:415–424.

    PubMed  Google Scholar 

  • Hausladen, A. and Fridovich, I. (1994) J. Biol. Chem. 269:29405–29408.

    PubMed  Google Scholar 

  • Hennet, T., Richter, C. and Peterhans, E. (1993a) Biochem. J. 289:587–592.

    PubMed  Google Scholar 

  • Hennet, T., Peterhans, E., Richter, C. and Bertoni, G. (1993b) Cancer Res. 53:1456–1460.

    PubMed  Google Scholar 

  • Hockenbery, D. M., Oltvai, Z. N., Yin, X. M., Milliman, G. L. and Korsmeyer, S. J. (1993) Cell 75:241–251.

    PubMed  Google Scholar 

  • Jacobson, M. D. and Raff, M. C. (1995) Nature 374:814–816.

    PubMed  Google Scholar 

  • Jouaville, L. S., Ichas, F., Holmuhamedov, E. L., Camacho, P. and Lechleiter, J. D. (1995) Nature 377:438–441.

    PubMed  Google Scholar 

  • Kass, G. E. N., Juedes, M. and Orrenius, S. (1992) Biochem. Pharmacol. 44:1995–2003.

    PubMed  Google Scholar 

  • Kobzik, L., Stringer, B., Balligand, J. L., Reid, M. B. and Stamler, J. S. (1995) Biochem. Biophys. Res. Commun. 211:375–381.

    PubMed  Google Scholar 

  • Kroemer, G., Petit, P., Zamzami, N., Vayssière, J. L. and Mignotte, B. (1995) FASEB J. 9:1277–1287.

    PubMed  Google Scholar 

  • Kröncke, K.-D., Fehsel, K. and Kolb-Bachofen, V. (1995) Biol. Chem. Hoppe-Seyler 376:327–343.

    PubMed  Google Scholar 

  • Kukielka, E., Dicker, E. and Cederbaum, A. I. (1994) Arch. Biochem. Biophys. 309:377–386.

    PubMed  Google Scholar 

  • Kurokawa, T., Kobayashi, H., Harada, A., Nakao, A., Sugiyama, S., Ozawa, T. and Takagi, H. (1992) Transplantation 53:308–311.

    PubMed  Google Scholar 

  • Laffranchi, R., Gogvadze, V., Richter, C. and Spinas, G. A. (1996) Biochem. Biophys. Res. Commun. 217:584–591.

    Google Scholar 

  • Lin, K.-T., Xue, J.-Y, Nomen, M., Spur, B. and Wong, P. Y.-K. (1995) J. Biol. Chem. 270:16487–16490.

    PubMed  Google Scholar 

  • Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, H. S. V., Sucher, N. J., Loscalzo, J., Singel, D. J. and Stamler, J. S. (1993) Nature 364:626–632.

    PubMed  Google Scholar 

  • Lipton, S. A., Singel, D. J. and Stamler, J. S. (1994) in: Nitric oxide: Roles in neuronal communication and Neurotoxicity (eds. H. Takagi, N. Toda, and R. D. Hawkins) Japan Scientific Societies Press and CRC Press, Tokyo. pp. 183–189.

    Google Scholar 

  • Lipton, S. A., Kim, W.-K., Rayudu, P. V., Asaad, W., Arnelle, D. R. and Stamler, J. S. (1995) Endothelium 3:S44, abstract 174.

    Google Scholar 

  • Lloyd, D., James, C. J. and Hastings, J. W. (1985) J. Gen. Microbiol. 131:2137–2140.

    Google Scholar 

  • Loew, L. M., Carrington, W., Tuft, R. A. and Fay, F. (1994) Proc. Natl. Acad. Sci. USA 91:4340–4344.

    Google Scholar 

  • Loschen, G., Azzi, A., Richter, C. and Flohé, L. (1974) FEBS Lett. 42:68–72.

    PubMed  Google Scholar 

  • Lowenstein, C. J. and Snyder, S. H. (1992) Cell 70:705–707.

    PubMed  Google Scholar 

  • Malorni, W., Rivabene, R., Santini, M. T., Rainaldi, G. and Donelli, G. (1994) Redox Report 1:57–64.

    Google Scholar 

  • Mannik, J. B., Asano, K., Izumi, K., Kieff, E. and Stamler, J. S. (1994) Cell 79:1137–1146.

    PubMed  Google Scholar 

  • Mannik, J. B., Asano, K., Izumi, K., Kieff, E. and Stamler, J. S. (1994) Cell 79:1137–1146.

    PubMed  Google Scholar 

  • McCord, J. M. and Turrens, J. F. (1994) in: Current topics in bioenergetics, Vol. 17. Molecular Basis of Mitochondrial Pathology (ed. C. P. Lee) Academic Press, San Diego. pp. 173–195.

    Google Scholar 

  • McDonald, L. S. and Moss, J. (1993) Proc. Natl. Acad. Sci. USA 90:6238–6241.

    PubMed  Google Scholar 

  • Messmer, U.K., Ankarcrona, M., Nicotera, P. and Brüne, B. (1994) FEBS Lett. 355:23–26.

    PubMed  Google Scholar 

  • Murphy, M. E. and Sies, H. (1991) Proc. Natl. Acad. Sci. USA 88:10680–10684.

    Google Scholar 

  • Murphy, A. N., Bredesen, D. E., Cortopassi, G., Wang, E. and Fiskum, G. (1996) Proc. Natl. Acad. Sci. USA 93:9893–9898.

    PubMed  Google Scholar 

  • Myers, K. M., Fiskum, G., Liu, Y., Simmens, S. J., Bredesen, D. E. and Murphy, A. N. (1995) J. Neurochem. 65:2432–2440.

    PubMed  Google Scholar 

  • Nicol, K. A., Chan, N., Davey, D. F. and Bennett, M. R. (1995) J. Auton. Nerv. Syst. 51:91–102.

    PubMed  Google Scholar 

  • Nicotera, P., Bellomo, G. and Orrenius, S. (1992) Annu. Rev. Pharmacol. Toxicol. 32:449–470.

    PubMed  Google Scholar 

  • Nishikawa, M., Sato, E. F., Utsumi, K. and Inoue, M. (1996) Cancer Res. 56:4535–4540.

    PubMed  Google Scholar 

  • Nohl, H. (1987) FEBS Lett. 214:269–273.

    PubMed  Google Scholar 

  • Nohl, H. (1991) in: Oxidative Damage and Repair (ed. K. J. A. Davies) Pergamon Press, Oxford. pp. 108–116.

    Google Scholar 

  • Nohl, H. and Jordan, W. (1986) Biochem. Biophys. Res. Commun. 138:533–539.

    PubMed  Google Scholar 

  • Nordmann, R., Ribière, C. and Roulach, H. (1992) Free Rad. Biol. Med. 12:219–240.

    PubMed  Google Scholar 

  • Paraidathathu, T., de Groot, H. and Kehrer, J. P. (1992) Free Rad. Biol. Med. 13:289–297.

    PubMed  Google Scholar 

  • Poderoso, J. J., Carreras, M. C., Lisdero, C., Riobo, N., Schöpfer, F. and Boveris, A. (1996) Arch. Biochem. Biophys. 328:85–92.

    PubMed  Google Scholar 

  • Radi, R., Beckman, J. S., Bush, K. M. and Freeman, B. A. (1991) J. Biol. Chem. 266:4244–4250.

    PubMed  Google Scholar 

  • Richter, C. (1992) in: New Comprehensive Biochemistry (General eds. A. Neuberger and L. L. M. Van Deenen). Volume Molecular Mechanisms in Bioenergetics (ed. L. Ernster) Elsevier, Amsterdam. pp. 349–358.

    Google Scholar 

  • Richter, C. (1993) FEBS Lett. 325:104–107.

    PubMed  Google Scholar 

  • Richter, C. (1995) Int. J. Biochem. Cell Biol. 27:647–653.

    PubMed  Google Scholar 

  • Richter, C. (1996) Redox Report 2:217–221.

    Google Scholar 

  • Richter, C. and Frei, B. (1988) Free Rad. Biol. Med. 4:365–375.

    PubMed  Google Scholar 

  • Richter, C. and Kass, G. E. N. (1991) Chem.-Biol. Interact. 77:1–23.

    PubMed  Google Scholar 

  • Richter, C. and Schweizer, M. (1996) in: Oxidative Stress and the Molecular Biology of Antioxidative Defenses, J. Scandalios, Ed., Cold Spring Harbor Laboratory Press (in press).

  • Richter, C., Gogvadze, V., Schlapbach, R., Schweizer, M. and Schlegel, J. (1994) Biochem. Biophys. Res. Commun. 205:1143–1150.

    PubMed  Google Scholar 

  • Richter, C., Gogvadze, V., Laffranchi, R., Schlapbach, R., Schweizer, M., Suter, M., Walter, P. and Yaffee, M. (1995) Biochim. Biophys. Acta 1271:67–74.

    PubMed  Google Scholar 

  • Richter, C., Schweizer, M., Cossarizza, A. and Franceschi, C. (1996) FEBS Lett. 378:107–110.

    PubMed  Google Scholar 

  • Rizzuto, R., Bastianutto, C., Brini, M., Murgia, M. and Pozzan, T. (1994) J. Cell Biol. 126:1183–1194.

    PubMed  Google Scholar 

  • Salganik, R. I., Shabalina, I. G., Solovyova, N. A., Kolosova, N. G., Solovyov, V. N. and Kolpakov, A. R. (1994) Biochem. Biophys. Res. Commun. 205:180–185.

    PubMed  Google Scholar 

  • Schanne, F. A., Kane, A., Young, E. and Farber, J. (1979) Science 206:699–700.

    Google Scholar 

  • Schindler, A. F., Olson, E. C., Spitzer, N. A. and Montal, M. (1996) J. Neurosci. 16:6125–6133.

    PubMed  Google Scholar 

  • Schulze-Osthoff, K., Bakker, A. C., Vanhaesebroeck, B., Beyart, R., Jacob, W. A. and Fiers, W. (1992) J. Biol. Chem. 267:5317–5323.

    PubMed  Google Scholar 

  • Schweizer, M. and Richter, C. (1994) Biochem. Biophys. Res. Commun. 204:169–175.

    PubMed  Google Scholar 

  • Schweizer, M. and Richter, C. (1996) Biochemistry 35:4524–4528.

    PubMed  Google Scholar 

  • Sessa, W. C., Garcia-Cardenas, G., Liu, J., Keh, A., Pollock, J. S., Bradley, J., Thiru, S., Braverman, I. M. and Desai, K. M. (1995) J. Biol. Chem. 270:17641–17644.

    PubMed  Google Scholar 

  • Shigenaga, M. K., Hagen, T. M. and Ames, B. N. (1994) Proc. Natl. Acad. Sci. USA 91:10771–10778.

    PubMed  Google Scholar 

  • Shimizu, S., Eguchi, Y., Kosaka, H., Kamiike, W., Matsuda, H. and Tsujimoto, Y. (1995) Nature 374:811–813.

    PubMed  Google Scholar 

  • Shoji, Y., Uedono, Y., Ishikura, H., Takeyama, N. and Tanaka, T. (1995) Immunology 84:543–548.

    PubMed  Google Scholar 

  • Sohal, R. S. (1993) Free Rad. Biol. Med. 14:583–588.

    PubMed  Google Scholar 

  • Sparagna, G. C., Gunter, K. K., Sheu, S.-S. and Gunter, T. E. (1995) J. Biol. Chem. 270:27510–27515.

    PubMed  Google Scholar 

  • Snyder, S. H. (1992) Science 257:494–976.

    PubMed  Google Scholar 

  • Snyder, S. H. (1995) Nature 377:196–197.

    PubMed  Google Scholar 

  • Stamler, J. S. (1994) Cell 78:931–936.

    PubMed  Google Scholar 

  • Stamler, J. S., Singel, D. J. and Loscalzo, J. (1992) Science 258:1898–1902.

    PubMed  Google Scholar 

  • Steinman, H. M. (1995) J. Biol. Chem. 270:3487–3490.

    PubMed  Google Scholar 

  • Steller, H. (1995) Science 267:1445–1449.

    PubMed  Google Scholar 

  • Takehara, Y., Kanno, T., Yoshioka, T., Inoue, M. and Utsumi, K. (1995) Arch. Biochem. Biophys. 323:27–32.

    PubMed  Google Scholar 

  • Taylor, D. E., Ghio, A. J. and Piantadosi, C. A. (1995) Arch. Biochem. Biophys. 316:70–76.

    PubMed  Google Scholar 

  • Torres, J., Darley-Usmar, V. and Wilson, M. T. (1995) Biochem. J. 312:169–173.

    PubMed  Google Scholar 

  • Trump, B. F. and Berezesky, I. K. (1995) FASEB J. 9:219–228.

    PubMed  Google Scholar 

  • Weisiger, R. A. and Fridovich, I. (1973) J. Biol. Chem. 248:4793–4796.

    PubMed  Google Scholar 

  • Wong. G. H. W. and Goeddel, D. V. (1988) Science 242:941–944.

    PubMed  Google Scholar 

  • Zamzami, N., Susin, S. A., Marchetti, P., Hirsch, T., Gomez-Monterrey, I., Castedo, M. and Kroemer, G. (1996) J. Exp. Med. 183:1533–1544.

    PubMed  Google Scholar 

  • Zhao, X. J., Sampath, V. and Caughey, W. S. (1995) Biochem. Biophys. Res. Commun. 212:1054–1060.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, C. Reactive Oxygen and Nitrogen Species Regulate Mitochondrial Ca2+ Homeostasis and Respiration. Biosci Rep 17, 53–66 (1997). https://doi.org/10.1023/A:1027387301845

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027387301845

Navigation