Skip to main content
Log in

Free Amino Acid, Protein and Water Content Changes Associated with Seed Development in Araucaria angustifolia

  • Published:
Biologia Plantarum

Abstract

The free amino acid, protein, water and dry matter contents were determined during the seed development of Araucaria angustifolia. Soluble and insoluble proteins in the mature seed represent 4.2 % of the fresh matter. The embryonic axis stored the greatest amount of soluble proteins, while cotyledons both with the embryonic axis showed the largest quantities of insoluble proteins in the mature seed. The greatest concentration of free amino acids was detected during the stage when cotyledons start to develop. Glutamic acid, aspartic acid, alanine and serine were predominant in the whole seed while arginine, lysine and γ-aminobutyric acid were present in great amounts only in cotyledons and embryonic axis. Although megagametophyte was important as a source of free amino acids, it was not the major protein storage organ in the mature seed. In the embryogenetic process, the rise of cotyledons is closely related to physiological and biochemical changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astarita, L.V., Guerra, M.P.: Early somatic embryogenesis in Araucaria angustifolia —induction and maintenance of embryonal-suspensor mass cultures.-Rev. bras. Fisiol. veg. 10: 113-118, 1998.

    CAS  Google Scholar 

  • Attree, S.M., Fowke, L.C.: Embryogeny of gymnosperms: advances in synthetic seed technology of conifers.-Plant Cell Tissue Organ Cult. 35: 1-35, 1993.

    Article  CAS  Google Scholar 

  • Becker, W.M., Leaver, C.J., Weir, E.M., Riezmam, H.: Regulation of glyoxysomal enzymes during germination of cucumber.-Plant Physiol. 62: 542-549, 1978.

    PubMed  CAS  Google Scholar 

  • Becwar, M.R., Nagmani, R., Wann, S.R.: Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda).-Can. J. Forest Res. 20: 810-817, 1990.

    Google Scholar 

  • Bewley, J.D., Black, M. (ed.): Seeds. Physiology of Development and Germination. 2nd Edition.-Plenum Press, New York 1994.

    Google Scholar 

  • Bozhkov, P.V., Ahn, I.S., Park, Y.G.: Two alternative pathways of somatic embryo origin from polyembryonic mature stored seeds of Pinus koraiensis Sieb et Zucc.-Can. J. Bot. 75: 509-512, 1997.

    Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Calanni, J., Berg, E., Wood, M., Mangis, D., Boyce, R., Weathers, W., Sievering, H.: Atmospheric nitrogen deposition at a conifer forest: response of free amino acids in Engelmann spruce needles.-Environ. Pollut. 105: 79-89, 1999.

    Article  CAS  Google Scholar 

  • Durzan, D.J., Chalupa, V.: Growth and metabolism of cells and tissues of jack pine (Pinus banksiana). 4. Changes in amino acids in callus and in seedlings of similar genetic origin.-Can. J. Bot. 54: 468-482, 1976a.

    CAS  Google Scholar 

  • Durzan, D.J., Chalupa, V.: Growth and metabolism of cells and tissues of jack pine (Pinus banksiana). Changes in free arginine and Sakaguchi-reactive compounds during callus growth and in germinating seedlings of similar genetic origin.-Can. J. Bot. 54: 483-495, 1976b.

    CAS  Google Scholar 

  • Durzan, D.J., Durzan, P.E.: Future technologies: model-reference control systems for the scale-up of embryogenesis and polyembryogenesis in cell suspension cultures.-In: Debergh, P.C., Zimmerman, R.H. (ed.): Micropropagation-Technology and Application. Pp. 389-423. Kluwer Academic Publishers, Dordrecht 1991.

    Google Scholar 

  • Egertsdotter, U., Von Arnold, S.: Development of somatic embryos in Norway spruce.-J. exp. Bot. 49: 155-162, 1998.

    Article  CAS  Google Scholar 

  • Ferreira, A.G., Dietrich, S.M.C., Handro, W.: Changes in the metabolism of Araucaria angustifolia during the early phases of germination and growth.-Rev. bras. Bot. 2: 67-71, 1979.

    CAS  Google Scholar 

  • Ferreira, A.G., Handro, W.: Aspects of seed germination in Araucaria angustifolia (Bert.) O. Ktze.-Rev. bras. Bot. 2: 7-13, 1979.

    Google Scholar 

  • Flinn, B.S., Roberts, D.R., Webb, D.T., Sutton, B.C.S.: Storage protein changes during zygotic embryogenesis in interior spruce.-Tree Physiol. 8: 71-82, 1991.

    PubMed  CAS  Google Scholar 

  • Galston, A.W., Kaur-Sawhney, R.: Polyamines as endogenous growth regulators.-In: Davies, P.J. (ed.): Plant Hormones —Physiology, Biochemistry and Molecular Biology. Pp. 158-178. Kluwer Academic Publishers, Dordrecht 1995.

    Google Scholar 

  • Gifford, D.: An electrophoretic analysis of the seed proteins from Pinus monticola and eight other species of pine.-Can. J. Bot. 66: 1808-1812, 1988.

    CAS  Google Scholar 

  • Gifford, D., Greenwood, J.S., Bewley, J.D.: Deposition of matrix and crystalloid storage proteins during protein body development in the endosperm of Ricinus communis L. cv. Hale seeds.-Plant Physiol. 69: 1471-1478, 1982.

    PubMed  CAS  Google Scholar 

  • Gifford, E.M., Foster, A.S.: Morphology and Evolution of Vascular Plants.-W.H. Freeman Co., New York 1989.

    Google Scholar 

  • Groome, M.C., Seymour, R., Gifford, D.J.: Hydrolysis of lipid and protein reserves in loblolly pine seeds in relation to protein electrophoretic patterns following imbibition.-Physiol. Plant. 83: 99-106, 1991.

    Article  CAS  Google Scholar 

  • Guerra, M.P., Silveira, V., Santos, A.L.W., Astarita, L.V., Nodari, R.O.: Somatic embryogenesis in Araucaria angustifolia (Bert.) O. Ktze.-In: Jain, S.M., Gupta, P.K., Newton, R.J. (ed.): Somatic Embryogenesis in Woody Plants. Vol. 6. Pp. 457-478. Kluwer Academic Publishers, Dordrecht 2000.

    Google Scholar 

  • Haines, R.J., Prakash, N.: Proembryo development and suspensor elongation in Araucaria Juss.-Aust. J. Bot. 28: 511-522, 1980.

    Article  Google Scholar 

  • Hakman, I., Stabel, P., Engström, P., Eriksson, T.: Storage protein accumulation during zygotic and somatic embryo development in Picea abies (Norway spruce).-Physiol. Plant. 80: 441-445, 1990.

    Article  CAS  Google Scholar 

  • Hausman, J.F., Kevers, C., Evers, D., Gaspar, Th.: Conversion of putrescine to γ-aminobutyric acid, an essential pathway for root formation by poplar shoots in vitro.-In: Altman, A.Y., Waisel, I. (ed.): Biology of Root Formation and Development. Pp. 133-139. Plenum Press, New York 1997.

    Google Scholar 

  • Heldt, H.-W.: Plant Biochemistry and Molecular Biology.-Oxford University Press, Oxford 1997.

    Google Scholar 

  • Lammer, D.L., Gifford, D.: Lodgepole pine germination. II. The seed proteins and their mobilization in the megagametophyte and embryonic axis.-Can. J. Bot. 57: 2544-2551, 1989.

    Google Scholar 

  • Lu, C.Y., Thorpe, A.: Somatic embryogenesis and plantlet regeneration in culture immature embryos of Picea glauca.-J. Plant Physiol. 128: 297-302, 1987.

    CAS  Google Scholar 

  • Marur, C.J., Sodek, L., Magalhães, A.C.N.: Free amino acids in leaves of cotton plants under water deficit.-Rev. bras. Fisiol. veg. 6: 103-108, 1994.

    CAS  Google Scholar 

  • Müntz, K., Becker, C., Pancke, J., Schlereth, A., Fischer, J., Horstmann, C., Kirkin, V., Neubohn, B., Senyuk, V., Shutov, A.: Protein degradation and nitrogen supply during germination and seedling growth of vetch (Vicia sativa L.).-J. Plant Physiol. 152: 683-691, 1998.

    Google Scholar 

  • Owens, J.N., Catalano, G.L., Aitken-Christie, J.: The reproductive biology of kauri (Agathis australis). IV. Late embryogeny, histochemistry, cone and seed morphology.-Int. J. Plant Sci. 158: 395-407, 1997.

    Article  Google Scholar 

  • Roberts, D.R., Flinn, B.S., Webb, D.T., Webster, F.B., Sutton, B.C.S.: Characterization of immature embryos of interior spruce by SDS-PAGE and microscopy in relation to their competence for somatic embryogenesis.-Plant Cell Rep. 8: 285-288, 1989.

    Article  CAS  Google Scholar 

  • Roberts, D.R., Flinn, B.S., Webb, D.T., Webster, F.B., Sutton, B.C.S.: Abscisic acid and indol-3-butyric acid regulation of maturation and accumulation of storage proteins in somatic embryos of interior spruce.-Physiol. Plant. 78: 355-360, 1990.

    Article  CAS  Google Scholar 

  • Satya Naraian, V., Nair, P.M.: Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants.-Phytochemistry 29: 367-375, 1990.

    Article  Google Scholar 

  • Urquhart, A.A., Joy, K.W.: Use of phloem exudates technique in the study of amino acid transport in pea plants.-Plant Physiol. 68: 750-754, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Valle, E.M., Boggio, S.B., Heldt, H.V.: Free amino acids content of phloem sap and fruits in Lycopersicon esculentum.-Plant Cell Physiol. 39: 458-461, 1998.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astarita, L., Floh, E. & Handro, W. Free Amino Acid, Protein and Water Content Changes Associated with Seed Development in Araucaria angustifolia . Biologia Plantarum 47, 53–59 (2003). https://doi.org/10.1023/A:1027376730521

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027376730521

Navigation