Skip to main content
Log in

Effect of Guanine Nucleotides on [3H]Glutamate Binding and on Adenylate Cyclase Activity in Rat Brain Membranes

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

GMP-PNP, a non-hydrolyzable analog of GTP binds tightly to G-protein in the presence of Mg2+, so that the binding is stable even after exhaustive washings. This property was exploited to prepare membrane samples of rat brain where G-protein GTP-binding sites were saturated with GMP-PNP. Experiments carried out with these membranes showed that GTP, GMP-PNP, GDP-S and GMP (1 mM) inhibit the sodium-independent [3H]glutamate binding by 30–40% [F(4,40) = 5.9; p < .001], whereas only GMP-PNP activates adenylate cyclase activity [F(6,42) = 3.56; p < .01]. The inhibition of sodium-independent [3H]glutamate binding occurred in the absence of Mg2+. These findings suggest that guanine nucleotides may inhibit glutamate binding and activate adenylate cyclase through distinct mechanisms by acting on different sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Birnbaumer, L., Abramowitz, J., and Brown, A. M. 1990. Receptor-effector coupling by G proteins. Biophys. Biochim. Acta 1031:163–224.

    Google Scholar 

  2. Hepler, J. R., and Gilman, A. G. 1992. G proteins. Trends Biochem. Sci. 17:383–387.

    Google Scholar 

  3. Hille, B. 1992. G protein-couple mechanisms and nervous signaling. Neuron. 9:187–195.

    Google Scholar 

  4. Spiegel, A. M., Shenker, A., and Weinstein, L. S. 1992. Receptor-effector coupling by G proteins: implications for normal and abnormal signal transduction. Endocr. Rev. 13:539–565.

    Google Scholar 

  5. Nürnberg, B., Gudermann, T., and Schultz, G. 1995. Receptors and G proteins as primary components of transmembrane signal transduction. Part 2. G proteins: structure and function J. Mol. Med. 73:123–132.

    Google Scholar 

  6. Monaghan, D. T., Bridges, R. J., and Cotman, C. W. 1989. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Ann. Rev. Pharmacol. 29:365–402.

    Google Scholar 

  7. Nakanishi, S., Ohkubo, H., Kakizuka, A., Yokota, Y., Shigemoto, R., Sasai, Y., and Takumi, T. 1990. Molecular characterization of mammalian tachykinin receptors and a possible epithelial potassium channel. Rec. Prog. Hormones Res. 46:69–84.

    Google Scholar 

  8. Tanabe, Y., Masu, M., Ishii, T., Shigemoto, R., and Nakanishi, S. 1992. A family of metabotropic glutamate receptors. Neuron 8:169–179.

    Google Scholar 

  9. Schoepp, D. D., and Conn, P. J. 1993 Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol. Sci. 14:13–20.

    Google Scholar 

  10. Cotman, C. W., Kahle, J. S., Miller, S. E., Ulas, J., and Bridges, R. J. 1995. Excitatory amino acid neurotransmission. Pages 75–85. in Floyd E. Bloom and David J. Kupfer (eds.), Psychopharmacology: The fourth generation of progress. Raven Press, Ltd., New York.

    Google Scholar 

  11. Pin, J. P., and Duvoisin, R. 1995. Neurotransmitter receptors I. The metabotropic glutamate receptors: structure and functions. Neuropharmacology 341:1–26.

    Google Scholar 

  12. Walaas, S. I., and Greengard, P. 1991. Protein phosphorylation and neuronal function. Pharmacol. Rev. 43:299–349.

    Google Scholar 

  13. Rodnight, R., and Wofchuk, S. T. 1992. Roles for protein phosphorylation in synaptic transmission. Essays Biochem. 27:91–102.

    Google Scholar 

  14. Baba, A., Nishiuchi, Y., Uemura, A., and Iwata, H. 1988. Mechanism of excitatory amino acid-induced accumulation of cyclic AMP in hippocampal slices: role of extracellular chloride. J. Pharmacol. Exp. Ther. 245:299–304.

    Google Scholar 

  15. Winder, D. G., and Conn, P. J. 1992. Activation of metabotropic glutamate receptors in the hippocampus increases cyclic AMP accumulation. J. Neurochem. 59:375–378.

    Google Scholar 

  16. Shoepp, D. D., and Conn, P. J. 1993. Metabotropic glutamate receptors in brain function and pathology. TIPS. 14:13–20.

    Google Scholar 

  17. Schoepp, D. D., and Johnson, B. G. 1993. Metabotropic glutamate receptor modulation of cAMP accumulation in the neonatal rat hippocampus. Neuropharmacology. 32:1359–1365.

    Google Scholar 

  18. Winder, D. G., and Conn, P. J. 1995. Metabotropic glutamate receptor (mGluR) mediated potentiation of cyclic AMP responses does not require phosphoinositide hydrolysis: mediation by a group II-like mGluR. J. Neurochem. 64:592–599.

    Google Scholar 

  19. Bruns, R. F., Pons, F., and Daly, J. W. 1980. Glutamate-and veratridine-elicited accumulations of cyclic AMP in brain slices: a role for factors which potentiate adenosine-responsive systems, Brain Res. 189:550–559.

    Google Scholar 

  20. Schoepp, D. D., Johnson, B. G., Salhoff, C. R., Wright, R. A., Goldsworthy, J. S., and Baker, S. R. 1995. Second-messenger responses in brain slices to elucidate novel glutamate receptors. J. Neurosci. Methods. 59:105–110.

    Google Scholar 

  21. Sharif, N. A., and Roberts, P. J. 1981. Regulation of cerebellar L-[3H]glutamate binding-influence of guanine nucleotides and Na+ ions. Biochem. Pharmacol. 30:3019–3022.

    Google Scholar 

  22. Butcher, S. P., Roberts, P. J., and Collins, J. F. 1986. Purine nucleotides inhibit the binding of DL-[3H] 2-amino-4-phosphonobutyrate (DL-[3H]APB) to L-glutamate-sensitive sites on rat brain membranes. Biochem. Pharmacol. 35:991–994.

    Google Scholar 

  23. Monahan, J. B., Hood, W. F., Michel, J., and Compton, R. P. 1988. Effects of guanine nucleotides on N-methyl-D-aspartate receptor-ligand interactions. Mol. Pharmacol. 34:111–116.

    Google Scholar 

  24. Baron, B. N., Dudley, M. W., McCarty, D. R., Miller, F. P., Reynolds, I. J., and Schmidt, C. J. 1989. Guanine nucleotides are competitive inhibitors of N-methyl-D-aspartate at its receptor site both in vitro and in vivo. J. Pharmacol. Exper. Ther. 250:162–169.

    Google Scholar 

  25. Souza, D. O., and Ramirez, G. 1991. Effects of guanine nucleotides on kainic acid binding and on adenylate cyclase in chick optic tectum and cerebellum. J. Mol. Neurosci. 3:39–45.

    Google Scholar 

  26. Barnes, J. M., Murphy, P. A., Kirkham, D., and Henley, J. M. 1993. Interaction of guanine nucleotides with [3H]kainate and 6-[3H]cyano-7-nitroquinoxaline-2,3-dione binding in goldfish brain. J. Neurochem. 61:1685–1691.

    Google Scholar 

  27. Gorodinsky, A., Paas, Y., and Teichberg, V. I. 1993. A ligand binding study of the interactions of guanine nucleotides with non-NMDA receptors. Neurochem. Int. 23:285–291.

    Google Scholar 

  28. Budson, A. E., Jackson, P. S., and Lipton, S. A. 1991. GDPßS antagonizes whole-cell current responses to excitatory amino acids. Brain Res. 548:346–348.

    Google Scholar 

  29. Paz, M. M., Ramos, M., Ramirez, G., and Souza, D. 1994. Differential effects of guanine nucleotides on kainic acid binding and on adenylate cyclase activity in chick optic tectum. FEBS Lett. 355:205–208.

    Google Scholar 

  30. Ibarra, C., and Ortega, A. 1995. Interaction of guanine nucleotides with the kainate binding protein from chick cerebellum. NeuroReport 6:1149–1152.

    Google Scholar 

  31. Tamir, A., and Tolkovsky, A. M. 1985. Transient states of adenylate cyclase in brain membranes. J. Neurochem. 44:1006–1013.

    Google Scholar 

  32. Rao, R., and Murthy, Ch. R. K. 1993. Characteristics of [3H]glutamate binding sites in rat cerebellum. Biochem. Mol. Biol. Int. 30:861–866.

    Google Scholar 

  33. Albano, J. D. M., Barnes, G. D., Maudsley, D., Brown, B. L., and Etkins, R. P. 1974. Factors affecting the saturation assay of cyclic AMP in biological systems. Anal. Biochem. 60:130–141.

    Google Scholar 

  34. Tovey, K. C., Oldaham, K. G., and Welan, J. A. M. 1974. A simple direct assay for cyclic AMP in plasma and other biological samples using an improved competitive protein binding technique. Clin. Chim. Acta. 56:221–234.

    Google Scholar 

  35. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  36. Tasca, C. I., Wofchuk, S. T., Souza, D. O., Ramirez, G., and Rodnight, R. 1995. Guanine nucleotides inhibit the stimulation of GFAP phosphorylation by glutamate. NeuroReport 6:249–252.

    Google Scholar 

  37. Lefkowitz, R. J. 1974. Stimulation of cathecolamine-sensitive adenylate cyclase by 5-guanylyl-imidodiphosphate. J. Biol. Chem. 249:6119–6124.

    Google Scholar 

  38. Lad, P. M., Welton, A. F., and Rodbell, M. 1977. Evidence for distinct guanine nucleotide sites in the regulation of the glucagon receptor and of adenylate cyclase. J. Biol. Chem. 252:5942–5946.

    Google Scholar 

  39. Iyengar, R., and Birnbaumer, L. 1982. Hormone receptors modulate the regulatory component of adenylyl cyclases by reducing its requirement of Mg2+ ion and increasing its extent of activation by guanine nucleotides. Proc. Natl. Acad. Sci. USA 79:5179–5183.

    Google Scholar 

  40. Sunyer, T., Codina, J., and Birnbaumer, L. 1984. GTP hydrolysis by pure Ni, the inhibitory regulatory component of adenylyl cyclases. J. Biol. Chem. 259:15447–15451.

    Google Scholar 

  41. Birnbaumer, L., Hildebrant, J. D., Codina, J., Mattera, R., Cerione, A., Sunyer, T., Rojas, F. J., Caron, M. G., Lefkowitz, R. J., and Iyengar, R. 1985. Molecular Mechanisms of Signal Transduction. Pages 131–182, in Cohen, P. and Houslay, M. D. (eds.), Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  42. Brandt, D. R., and Ross, E. M. 1986. Catecholamine-stimulated GTPase cycle. Multiple sites of regulation by beta-adrenergic receptor and Mg2+ studied in reconstituted receptor-Gs vesicles. J. Biol. Chem. 261:1656–1664.

    Google Scholar 

  43. Teichberg, V. I., Mano, I., Paperna, T., and Paas, Y. 1993. The chick bergmann glia kainate binding protein: un update on function. J. Neurochem. 61(Suppl.) S60D.

  44. Paas, Y., Devillers-Thiery, A., Changeux, J.-P., Medevielle, F., and Teichberg, V. I. 1996. Identification of an extracellular motif involved in the binding of guanine nucleotides by a glutamate receptor. EMBO J. 15:1548–1551.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, M.A., Medeiros, A.C., Rocha, P.C.B. et al. Effect of Guanine Nucleotides on [3H]Glutamate Binding and on Adenylate Cyclase Activity in Rat Brain Membranes. Neurochem Res 22, 181–187 (1997). https://doi.org/10.1023/A:1027367624250

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027367624250

Navigation