Advertisement

Designs, Codes and Cryptography

, Volume 31, Issue 1, pp 5–14 | Cite as

Extensions of Generalized Product Caps

  • Yves Edel
Article

Abstract

We give some variants of a new construction for caps. As an application of these constructions, we obtain a 1216-cap in PG(9,3) a 6464-cap in PG(11,3) and several caps in ternary affine spaces of larger dimension, which lead to better asymptotics than the caps constructed by Calderbank and Fishburn [1]. These asymptotic improvements become visible in dimensions as low as 62, whereas the bound from Calderbank and Fishburn [1] is based on caps in dimension 13,500.

product construction asymptotic bound Hill cap Calderbank–Fishburn cap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. Calderbank and P. C. Fishburn, Maximal three-independent subsets of {0, 1, 2}n, Designs, Codes and Cryptography, Vol. 4 (1994) pp. 203-211.Google Scholar
  2. 2.
    Y. Edel and J. Bierbrauer, Recursive constructions for large caps, Bulletin of the Belgian Mathematical Society-Simon Stevin, Vol. 6 (1999) pp. 249-258.Google Scholar
  3. 3.
    Y. Edel and J. Bierbrauer, 41 is the largest size of a cap in PG(4; 4), Designs, Codes and Cryptography, Vol. 16 (1999) pp. 151-160.Google Scholar
  4. 4.
    Y. Edel and J. Bierbrauer, Large caps in small spaces, Designs, Codes and Cryptography, Vol. 23 (2001) pp. 197-212.Google Scholar
  5. 5.
    Y. Edel, S. Ferret, I. Landjev and L. Storme, The classification of the largest caps in AG(5; 3), Journal of Combinatorial Theory A, Vol. 99 (2002) pp. 95-110.Google Scholar
  6. 6.
    D. Glynn and T. T. Tatau, A 126-cap of PG(5; 4) and its corresponding [126,6,88]-code, Utilitas Mathematica, Vol. 55 (1999) pp. 201-210.Google Scholar
  7. 7.
    R. Hill, On the largest size of cap in S5;3, Atti Accad. Naz. Lincei Rendiconti, Vol. 54 (1973) pp. 378-384.Google Scholar
  8. 8.
    J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces, Journal of Statistical Planning and Inference, Vol. 72 (1998) pp. 355-380.Google Scholar
  9. 9.
    J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces, Proceedings of the Fourth Isle of Thorns Conference (July 16-21, 2000) pp. 201-246.Google Scholar
  10. 10.
    J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Oxford University Press, Oxford (1991).Google Scholar
  11. 11.
    F. J. McWilliams and N. J. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam (1977).Google Scholar
  12. 12.
    A. C. Mukhopadhyay, Lower bounds on mt(r; s), Journal of Combinatorial Theory A, Vol. 25 (1978) pp. 1-13.Google Scholar
  13. 13.
    G. Pellegrino, Sul massimo ordine delle calotte in S 4;3, Matematiche (Catania), Vol. 25 (1970) pp. 1-9.Google Scholar
  14. 14.
    B. Segre, Le geometrie di Galois, Ann. Mat. Pura Appl., Vol. 48 (1959) pp. 1-97.Google Scholar
  15. 15.
    Yves Edel's homepage: http://www.mathi.uni-heidelberg.de/~yves.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Yves Edel
    • 1
  1. 1.Mathematisches Institut der UniversitätHeidelbergGermany

Personalised recommendations