Skip to main content
Log in

Modeling and Optimal Design of High-Sensitivity Piezoresistive Microcantilevers Within Flow Channels for Biosensing Applications

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The mechanical design and optimization of piezoresistive cantilevers for biosensing applications is studied via finite element analysis. Models are described for predicting the static behavior of cantilevers with elastic and piezoresistive layers for analyte-receptor binding. The high-sensitivity cantilevers can be used to detect changes in surface stress due to binding and hybridization of biomolecules. The silicon-based cantilevers have thicknesses typically on the order of a few microns and are doped to introduce their piezoresistive characteristics. Parametric modeling based on the finite element method is used to help determine the optimum parameters of cantilever design. Chemo-mechanical binding forces have been analyzed to understand issues of saturation over the cantilever surface. Furthermore, the introduction of stress concentration regions during cantilever fabrication has been discussed which greatly enhances the detection sensitivity through increased surface stress. The spring constant and the resonance frequency change are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Bashir, A. Gupta, G.W. Neudeck, M. McElfresh, and R. Gomez, Journal of Micromechanics & Microengineering 10(4), 483-491 (2000).

    Google Scholar 

  • P. Bauer, B. Hecht, and C. Rossel, Elsevier, Ultramicroscopy 61(1–4), 127-130 (1995).

    Google Scholar 

  • J. Brugger, R.A. Buser, and N.F. de Rooij, Journal of Micromechanics & Microengineering 2(3), 218-220 (1992).

    Google Scholar 

  • K.C. Chang and D.A. Hammer, Biophysical Journal 76, 1280-1292 (1999).

    Google Scholar 

  • D. Dragoman and M. Dragoman, Applied Physics Letters 79(5), 581-583 (2001).

    Google Scholar 

  • P. Grabiec, T. Gotszalk, J. Radojewski, K. Edinger, N. Abedinov, and I.W. Rangelow, Microelectronic Engineering 61–62, 981-986 (2002).

    Google Scholar 

  • G. Hansen, M.W. Mortensen, J. Anderson, J. Ulstrop, A. Kuhle, J. Garnaes, and A. Boisen, Probe Microscope 2, 139-149 (2001).

    Google Scholar 

  • K. Hansen, H.-F. Ji, G. Wu, R. Datar, R. Cote, A. Majumdar, and T. Thundat, Analytical Chemistry 73, 1567-1571 (2001).

    Google Scholar 

  • J.A. Harley and T.W. Kenny, Applied Physical Letters 75(2), 289-291 (1999).

    Google Scholar 

  • H. Jensenius, J. Thaysen, A. Rasmussen, H.L. Veje, O. Hansen, and A. Boisen, Applied Physics Letters 76(18), 2615-2617 (2000).

    Google Scholar 

  • S. Kassegne, J.M. Madou, R. Whitten, J. Zoval, E. Mather, K. Sarkar, D. Hodko, and S. Maity, Proceedings of the SPIE Conference on Smart Structures and Materials, San Diego, CA, March 17–21, (2002).

  • N.V. Lavrik, C.A. Tipple, M.J. Sepaniak, and D. Datskos, Biomed. Microdevices 3(1), 35-44 (2001).

    Google Scholar 

  • R. Raiteri, G. Nelles, H.-J. Butt, W. Knoll, and P. Skladal, Sensors and Actuators B 61, 213-217 (1999).

    Google Scholar 

  • D.G. Swift, R.G. Posner, and D.A. Hammer, Biophysics. J. 75, 2597-2611 (1998).

    Google Scholar 

  • D. Thundat, D.P. Allison, and R.J. Warmack, Nucleic Acids Research 22(20), 4224-4228 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M., Zhang, X. & Ozkan, C.S. Modeling and Optimal Design of High-Sensitivity Piezoresistive Microcantilevers Within Flow Channels for Biosensing Applications. Biomedical Microdevices 5, 323–332 (2003). https://doi.org/10.1023/A:1027361814435

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027361814435

Navigation