Skip to main content
Log in

A Micro-tool for Mechanical Manipulation of in vitro Cell Arrays

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper reports on the fabrication and test of a micro-tool for in vitro cell array manipulation. The device consists of a micro-post array with supporting pillars which can be used to apply simultaneous mechanical force to all elements of a cultured cell array. The mechanical pulling force has been shown to initiate neurite outgrowth, thus allowing one to potentially engineer a large living neural network having defined connectivity. In order to realize this goal, the designed micro-tool must have some important features. For example, it must be transparent to allow visual access through a light microscope. It must also have a gap of 3–5 μ m between the tips of the posts and the culture dish to avoid post breakage and to allow matching the height of individual cells. We have used silicon bulk micromachining and anodic bonding to fabricate the micro-post array having the required features. The micro-tool reported in this paper has overall dimensions of 5×5 mm2, which includes an array of 2,500 posts (5×5 μ m2) supported by four pillars (600×600 μ m2). The posts are made from a SiO2/Si3N4 sandwich while the pillars have an additional silicon layer for extra support. The micro-tool was tested on randomly seeded embryonic chick forebrain cells. Moving the micro-post array relative to the cell culture substrate at a constant speed of 36 μ m/hour resulted in several neurite-like cytoplasmic processes that were initiated and elongated from cells that had adhered to the posts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.A. Ayón, R. Braff, C.C. Lin, H.H. Sawin, and M.A. Schmidt, J. Electrochem. Soc. 146, 339-349 (1999).

    Google Scholar 

  • D. Bray, Developmental Biology 102, 379-389 (1984).

    Google Scholar 

  • P.K. Campbell, K.E. Jones, and R.J. Huber, IEEE Trans. Biomed. Eng. 38, 758-768 (1991).

    Google Scholar 

  • S. Chada, P. Lamoureux, R.E. Buxbaum, and S.R. Heidemann, J. Cell. Sci. 110, 1179-1186 (1997).

    Google Scholar 

  • K. Chun, G. Hashiguchi, H. Toshiyoshi, and H. Fujita, MEMS'99 406-411 (1999).

  • J.P. Den Hartog, Strength of Materials (Dover Publications, 1977).

  • T.J. Dennerl, H.C. Joshi, V.L. Steel, R.E. Buxbaum, and S.R. Heidemann, The Journal of Cell Biology 107, 665-674 (1988).

    Google Scholar 

  • J.N. Fass and D.J. Odde, Biophys. J. 85, 623-636 (2003).

    Google Scholar 

  • J.G.E. Gardeniers, J.W. Berenschot, M.J. de Boer, Y. Yeshurun, and M. Hefetz, MEMS'02 141-144 (2002).

  • L. Griscom P. Degenaar, B. LePioufle, El Tamiya, and H. Fujita, Transducers'01 338-341 (2001).

  • G.W. Gross, B.K. Rhoades, H.M.E. Azzazy, and M.-C. Wu, Biosensors and Bioelectronics 10, 553-567 (1995).

    Google Scholar 

  • J.A. Hammarback, J.B. McCarthy, S.L. Palm, L.T. Furcht, and P.C. Letourneau, Developmental Biology 126, 29-39 (1988).

    Google Scholar 

  • S.R. Heidemann, P. Lamoureux, and R.E. Buxbaum, J. Cell Biol. 111, 1949-1957 (1990).

    Google Scholar 

  • M.O. Heuschkel, L. Guerin, B. Buisson, D. Bertrand, and P. Renaud, Sensors & Actuators B 48, 356-361 (1998).

    Google Scholar 

  • H. Jansen, M. Boer, R. Wiegerink, N. Tas, E. Smulders, C. Neagu, and M. Elwenspoek, Microelectronic Engn 35, 45-50 (1997).

    Google Scholar 

  • Y. Jimbo, H.P.C. Robinson, and A. Kawana, IEEE Trans. Biomed. Eng. 40, 804-810 (1993).

    Google Scholar 

  • P. Lamoureux, R.E. Buxbaum, and S.R. Heidemann, Nature 340, 159-162 (1989).

    Google Scholar 

  • L. Lauer, S. Ingebrandt, M. Scholl, and A. Offengausser, IEEE Trans. Biomed. Eng. 48, 838-842 (2001).

    Google Scholar 

  • D.V. McAllister, F. Cros, S.P. Davis, L.M. Matta, M.R. Prausnitz, and M.G. Allen, Transducers'99 1098-1101 (1999).

  • H.P. Neves, R.H. Goldsmith, A.W. Degolyer, G.D. Bachand, J.J. Schmidt, and C. D. Montemagno, Transducers'01 1086-1088 (2001).

  • B.A. Parviz and K. Najafi, J. Micromech. Microeng. 11, 277-282 (2001).

    Google Scholar 

  • R. Singhvi, A. Kumar, G.P. Lopez, G.N. Stephanopulos, D.I.C. Wang, G.M. Whitesides, and D.E. Ingber, Science 264, 696-698 (1994).

    Google Scholar 

  • B.C. Wheeler, J.M. Corey, G.J. Brewer, and D.W. Branch, Journal of Biomechanical Engineering 121, 73-78 (1999).

    Google Scholar 

  • T. Yoshioka, T. Ando, M. Shikida, and K. Sato, Sensors & Actuators A 82, 291-296 (2000).

    Google Scholar 

  • J. Zheng, P. Lamoureux, V. Santiago, T. Dennerll, R.E. Buxbaum, and S.R. Heidemann, J. Neurosci. 11, 1117-1125 (1991).

    Google Scholar 

  • J. Zheng, R.E. Buxbaum, and S.R. Heidemann, J. Cell Sci. 104, 1239-1250 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldi, A., Fass, J.N., Silva, M.N.D. et al. A Micro-tool for Mechanical Manipulation of in vitro Cell Arrays. Biomedical Microdevices 5, 291–295 (2003). https://doi.org/10.1023/A:1027353612618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027353612618

Navigation