Skip to main content
Log in

A Theoretical Study of the Kinetics of Hydride Cracking in Zirconium Alloys

  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

A diffusion model is suggested for computing the rate of delayed hydride cracking (DHC) in nonirradiated zirconium-base alloys. The rates of DHC in claddings of fuel elements of VVÉR and RBMK reactors and in pressure pipes of CANDU reactors are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. G. Ioltukhovskii, B. A. Kalin, and A. A. Shmakov, Hydrogen Embrittlement and Hydride Cracking of Zirconium Components of Light-Water Reactors [in Russian], MIFI, Moscow (2001).

    Google Scholar 

  2. N. M. Beskorovainyi, B. A. Kalin, P. A. Platonov, et al., Structural Materials for Nuclear Reactors [in Russian], Énergoatomizdat, Moscow (1995).

    Google Scholar 

  3. B. F. Kammenzind, B. M. Berquist, R. Bajaj, et al., “The long-range migration of hydrogen through zircaloy in response to tensile and compressive stress gradients,” in: Zr in the Nuclear Industry, XII Int. Symp., ASTM STP 1354 (2000), pp. 196–233.

  4. A. A. Shmakov, E. A. Smirnov, and H. Bruchertseifer, “Hydrogen diffusion and distribution in oxidized zirconium alloys by thermo-release method,” Metallofiz. Noveish. Tekhnol., 21, 35–39 (1999).

    Google Scholar 

  5. H. Liebowitz (ed.), Fracture, Vol. 3, Engineering Fundamentals and Environmental Effects, Academic Press, New York (1969 – 1972).

    Google Scholar 

  6. A. S. Gusev, Fatigue Resistance and Environmental Effects [in Russian], Mashinostroenie, Moscow (1989).

    Google Scholar 

  7. G. P. Kobylyanskii and A. E. Novoselov, Radiation Resistance of Zirconium and Zirconium-Base Alloys, A Handbook on Reactor Materials [in Russian], GNTs RF NIIAR, Dimitrovgrad (1996).

    Google Scholar 

  8. Y. S. Kim, Y. G. Matvienko, Y. M. Cheong, et al., “A model of the threshold stress intensity factor K1H for delayed hydride cracking of Zr – 2.5 Nb alloy,” J. Nucl. Mater., 278, 251–257 (2000).

    Google Scholar 

  9. S.-Q. Shi, “Diffusion-controlled hydride growth near crack tip in zirconium under temperature transients,” J. Nucl. Mater., 275, 318–323 (1999).

    Google Scholar 

  10. M. I. Solonin, L. P. Sinel'nikov, V. A. Tzykanov, et al., “Materials science problems of long-term wet and dry storage of OYaT RBMK-1000,” in: Coll. Works of VIth Russian Conf. on Reactor Materials, Vol. 2, Part 2 [in Russian], Dimitrovgrad, GNTs RF NIIAR (2001), pp. 3–22.

    Google Scholar 

  11. D. Wappling, A. R. Massih, and P. Stahle, “A model for hydride-induced embrittlement in zirconium-based alloys,” J. Nucl. Mater., 249, 231–238 (1997).

    Google Scholar 

  12. N. Dupin, I. Ansara, C. Servant, et al., “A thermodynamic data-base for zirconium alloys,” J. Nucl. Mater., 275, 287–295 (1999).

    Google Scholar 

  13. M. P. Puls, “The effects of misfit and external stresses on terminal solid solubility of hydride-forming metals,” Acta Metall., 29, 1961–1968 (1981).

    Google Scholar 

  14. M. P. Puls, “Elastic and plastic accommodation effects on metal-hydride solubility,” Acta Metall., 32, 1259–1269 (1984).

    Google Scholar 

  15. A. A. Shmakov, Yu. K. Bibilashvili, B. A. Kalin, et al., “Prediction of the possibility of hydride cracking of zirconium fuel element claddings,” in: Preprint MIFI No. 003 – 99 [in Russian], Moscow (1999).

  16. A. A. Shmakov, “Some characteristics of hydrogen-charged zirconium alloys,” in: Sci. Sess. MIFI-2002, Coll. Works of MIFI, Vol. 9 [in Russian], Moscow (2002), pp. 105–106.

  17. J. F. R. Ambler, “Effect of direction of approach to temperature on the delayed hydrogen cracking behavior of cold-worked Zr – 2.5 Nb,” in: Zr in the Nuclear Industry, VIth Int. Symp. ASTM STP 824 (1984), pp. 653–674.

  18. S. Sagat, C. K. Chow, M. P. Puls, et al., “Delayed hydride cracking in zirconium alloys in a temperature gradient,” J. Nucl. Mater., 279, 107–117 (2000).

    Google Scholar 

  19. A. Sawatzky and C. E. Ells, “Understanding hydrogen in zirconium,” in: Zr in the Nuclear Industry, XIIth Int. Symp. ASTM STP 1354 (2000), pp. 32–48.

  20. S. V. Ivanova and A. V. Nikulina, “Zirconium alloys for rod components of VVÉR and RBMK reactors,” Fiz. Khim. Obrab. Mater., No. 6, 15–25 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shmakov, A.A., Kalin, B.A. & Ioltukhovskii, A.G. A Theoretical Study of the Kinetics of Hydride Cracking in Zirconium Alloys. Metal Science and Heat Treatment 45, 315–320 (2003). https://doi.org/10.1023/A:1027348922492

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027348922492

Keywords

Navigation