Skip to main content
Log in

How Do Bacteria Avoid High Oxygen Concentrations?

  • Published:
Bioscience Reports

Abstract

Bacteria, such as Escherichia coli and Azospirillum brasilense, avoid microenvironments with elevated oxygen concentrations, not by sensing reactive oxygen derivatives, but by sensing a metabolic down-shift that results from elevated oxygen levels. A novel protein, Aer, and the chemotaxis serine receptor, Tsr, have recently been identified as transducers for aerotaxis which monitor internal energy levels in the bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Armitage, J. P., Ingham, C. and Evans, M. C. W. (1985) J. Bacteriol. 161:967–972.

    PubMed  Google Scholar 

  • Baracchini, O. and Sherris, J. C. (1959) J. Pathol. Bacteriol. 77:565–574.

    PubMed  Google Scholar 

  • Baryshev, V. A., Glagolev, A. N. and Skulachev, V. P. (1981) Nature 292:338–340.

    Google Scholar 

  • Beijerinck, M. W. (1893) Zentrabl. Bakteriol. Parasitenk. 14:827–845.

    Google Scholar 

  • Benov, L. and Fridovich, I. (1996) Proc. Natl. Acad. Sci. USA 93:4999–5002.

    PubMed  Google Scholar 

  • Bespalov, V. A., Zhulin, I. B. and Taylor, B. L. (1996) Proc. Natl. Acad. Sci. USA 93:10084–10089.

    PubMed  Google Scholar 

  • Bibikov, S. I., Grishanin, R. N., Kaulen, A. D., Marwan, W., Oesterhelt, D. and Skulachev, V. P. (1993) Proc. Natl. Acad. Sci. USA 90:9446–9450.

    PubMed  Google Scholar 

  • Bibikov, S. I. and Skulachev, V. P. (1989) FEBS Lett. 243:303–306.

    Google Scholar 

  • Bourret, R. B., Borkovich, K. A. and Simon, M. I. (1991) Annu. Rev. Biochem. 60:401–441.

    PubMed  Google Scholar 

  • Eisenback, M. (1996) Mol. Microbiol. 20:903–910.

    PubMed  Google Scholar 

  • Engelmann, T. W. (1881a) Pflugers Arch. Gesammte Physiol. 25:285–292.

    Google Scholar 

  • Engelmann, T. W. (1881b) Pflugers Arch. Gesammte Physiol. 26:537–545.

    Google Scholar 

  • Glagolev, A. N. (1980) J. Theor. Biol. 82:171–185.

    PubMed  Google Scholar 

  • Grishanin, R. N., Bibikov, S. I., Altschuler, I. M., Kaulen, A. D., Kazimirchuk, S. B., Armitage, J. P. and Skulachev, V. P. (1996) J. Bacteriol. 178:3008–3014.

    PubMed  Google Scholar 

  • Grishanin, R. N., Chalmina, I. I. and Zhulin, I. B. (1991) J. Gen. Microbiol. 137:2781–2785.

    Google Scholar 

  • Jennings, M. S. and Crosby, J. H. (1901) Am. J. Physiol. 6:31–37.

    Google Scholar 

  • Krikos, A., Conley, M. P., Boyd, A., Berg, H. C. and Simon, M. I. (1985) Proc. Natl. Acad. Sci. USA 82:1326–1330.

    PubMed  Google Scholar 

  • Laszlo, D. J., Fandrich, B. L., Sivaram, A., Chance, B. and Taylor, B. L. (1984a) J. Bacteriol. 159:663–667.

    PubMed  Google Scholar 

  • Laszlo, D. J., Niwano, M., Goral, W. W. and Taylor, B. L. (1984b) J. Bacteriol. 159:820–824.

    PubMed  Google Scholar 

  • Laszlo, D. J. and Taylor, B. L. (1981) J. Bacteriol. 145:990–1001.

    PubMed  Google Scholar 

  • Lindbeck, J. C., Goulbourne, E. A., Jr., Johnson, M. S. and Taylor, B. L. (1995) Microbiology 141:2945–2953.

    PubMed  Google Scholar 

  • Macnab, R. M. (1996) In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Neidhardt, F. C. et al. (eds). American Society for Microbiology, Washington, DC., pp. 181–199.

    Google Scholar 

  • Miller, J. B. and Koshland, D. E., Jr. (1977) Proc. Natl. Acad. Sci. USA 74:4752–4756.

    PubMed  Google Scholar 

  • Miller, S. and Diehn, B. (1978) Science 200:548–549.

    PubMed  Google Scholar 

  • Niwano, M. and Taylor, B. L. (1982) Proc. Natl. Acad. Sci. USA 79:11–15.

    PubMed  Google Scholar 

  • Nystrom, T., Larsson, C. and Gustafson, L. (1996) EMBO J. 15:3219–3228.

    PubMed  Google Scholar 

  • Peters, T. R., Tosk, J. M. and E. A. Goulbourne, Jr. (1990) Anal. Biochem. 186:316–319.

    PubMed  Google Scholar 

  • Poole, R. K. (1994) Antonie van Leeuwenhoek 65:289–310.

    PubMed  Google Scholar 

  • Rowsell, E. H., Smith, J. M., Wolfe, A. and Taylor, B. L. (1995) J. Bacteriol. 177:6011–6014.

    PubMed  Google Scholar 

  • Shioi, J., Dang, C. V. and Taylor, B. L. (1987) J. Bacteriol. 169:3118–3123.

    PubMed  Google Scholar 

  • Shioi, J., and Taylor, B. L. (1984) J. Biol. Chem. 259:10983–10988.

    PubMed  Google Scholar 

  • Skulachev, V. P. (1996) Q. Rev. Biophys. 29:169–202.

    PubMed  Google Scholar 

  • Stock, J. B. and Surette, M. G. (1996) In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Neidhardt, F. C. et al. (eds). American Society for Microbiology, Washington, DC., pp. 1103–1129.

    Google Scholar 

  • Taylor, B. L. (1983a) Trends Biochem. Sci. 8:438–441.

    Google Scholar 

  • Taylor, B. L. (1983b) Annu. Rev. Microbiol, 37:551–573.

    PubMed  Google Scholar 

  • Taylor, B. L., Miller, J. B., Warrick, H. M. and Koshland, D. E., Jr. (1979) J. Bacteriol. 140:567–573.

    PubMed  Google Scholar 

  • Wong, L. S., Johnson, M. S., Zhulin, I. B. and Taylor, B. L. (1995) J. Bacteriol. 177:3985–3991.

    PubMed  Google Scholar 

  • Zhulin, I. B., Bespalov, V. A., Johnson, M. S. and Taylor, B. L. (1996) J. Bacteriol. 178:5199–5204.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhulin, I.B., Johnson, M.S. & Taylor, B.L. How Do Bacteria Avoid High Oxygen Concentrations?. Biosci Rep 17, 335–342 (1997). https://doi.org/10.1023/A:1027340813657

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027340813657

Navigation